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Abstract

Highly frustrated lattices yield a completely flat lowest single-electron band. Remarkably, exact many-body ground states can

be constructed for the repulsive Hubbard model and the t − J model by filling this flat band with localized electron states.

This construction leads to a macroscopic ground-state degeneracy. We discuss how to compute these ground-state degeneracies

for a certain class of models, including in particular the sawtooth chain. Furthermore, we discuss generic consequences for low-

temperature thermodynamic properties, like the appearance of a low-temperature peak in the specific heat. Finally, we present

complementary numerical results obtained by exact diagonalization.
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1. Introduction

It is a rare event that one can make exact statements
about a strongly correlated electron system, especially in
dimensions bigger than one. Competing interactions usu-
ally render the problem even more difficult, but sometimes
they are also helpful for the analysis. In particular, on
highly frustrated lattices it is possible to construct a macro-
scopic number of ground states (GSs) using localized single-
particle excitations as building blocks. On the one hand,
such a construction has been applied to the so-called flat-
band Hubbard models in order to show that they exhibit
fully saturated ferromagnetism for suitable electron fillings
(see, e.g., [1–5]). On the other hand, so-called localized
magnon states have been found to yield exact many-body
GSs for highly frustrated quantum antiferromagnets in high
magnetic fields [6–9]. Furthermore, it has been shown that
the localized-magnon GSs have important consequences for
the low-temperature magneto-thermodynamic properties
like an enhanced magnetocaloric effect close to the satu-
ration field [10–16]. Surprisingly, the corresponding ther-
modynamics of flat-band Hubbard models did not seem
to have been investigated despite the long history of these
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models [1–3]. This motivated us to start studying the ther-
modynamic properties of correlated electron systems on
highly frustrated lattices [16–20]. Here we summarize some
aspects of the construction of localized-electron GSs as well
as their consequences for the low-temperature thermody-
namics and present some complementary numerical results.

2. Models with localized electron states

We will discuss two classes of models of correlated elec-
trons. Firstly, we consider the N -site Hubbard Hamiltonian

H =
∑

σ=↑,↓

∑

〈i,j〉

ti,j

(

c†i,σcj,σ + c†j,σci,σ

)

+ U
∑

i

ni,↑ni,↓

+µ
N

∑

i=1

ni , (1)

where i denotes the lattice sites, 〈i, j〉 are pairs of nearest

neighbors, the c
(†)
i,σ are the usual fermion operators, ni,σ =

c†i,σci,σ, ni = ni,↑ + ni,↓. U ≥ 0 is the on-site Coulomb
repulsion. Note that we have chosen [17] non-standard sign
conventions for the hopping integrals ti,j and the chemical
potential µ in order to emphasize the analogy with the
antiferromagnetic Heisenberg model in a magnetic field.

Secondly, we consider the t− J model with Hamiltonian
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Fig. 1. The sawtooth chain. Filled circles show electron sites. Two
trapping cells occupied by localized electron states are indicated by
bold lines.

H =
∑

σ=↑,↓

∑

〈i,j〉

ti,j P
(

c†i,σcj,σ + c†j,σci,σ

)

P

+
∑

〈i,j〉

Ji,j

(

~Si · ~Sj −
1

4
ni nj

)

+ µ

N
∑

i=1

ni . (2)

Here P is the projector which eliminates doubly occupied
sites and ~Si are spin-1/2 operators acting on a singly occu-
pied site i. The t−J model (2) arises as the large-U limit of
the Hubbard model (1), yielding the relation Ji,j = 4 t2i,j/U
up to second order in the hopping integrals ti,j . However,
the implied relation between the Ji,j is not important for
our purposes. We will therefore ignore it and choose Ji,j =
J . Conversely, one could choose a site-dependent Coulomb
repulsion Ui > 0 in the Hubbard model (1) without affect-
ing any of our main conclusions.

We would like to emphasize that our main conclusions
apply to any highly frustrated lattice. However, for the
sake of concreteness, we will focus on the sawtooth chain
sketched in Fig. 1. The hopping integrals ti,j are t along the
base line and t′ along the zigzag-line, respectively. Periodic
boundary conditions are imposed along the chain direction.

The single-electron problem is solved as usually by intro-
ducing a momentum k. On the sawtooth lattice one finds
two branches whose dispersions read

ε±(k) = t cos k ±
√

t2 cos2 k + 2 t′2 cos k + 2 t′2 + µ . (3)

Remarkably, the lower branch ε−(k) becomes completely
flat, i.e., k-independent for t′ =

√
2 t. The sawtooth Hub-

bard model (1) with this choice of hopping integrals is a
particular case of Tasaki’s model which exhibits saturated
ferromagnetism for a half-filled flat band, i.e., when the
number of electrons is n = N/2 [2,3]. It is common practice
to introduce on-site energies for Tasaki’s model [2, 3] such
that the flat-band condition t′ =

√
2 t can be replaced by

a condition for the on-site energies (see also [4, 5]). How-
ever, since this generalization does not change any of the
fundamental physics, we will not pursue this either here.

There are many frustrated lattices which yield a lowest
completely flat single-electron band, including popular lat-
tices like the kagome and pyrochlore lattices in two and
three dimensions, respectively. In fact, a completely flat
lowest single-electron band can be taken as the defining
property of a highly frustrated lattice.

Given such a flat band of excitations, one can transform
back to real space and localize the excitations in a finite re-
gion. Such ‘localized electron excitations’ live in trapping

cells which for the sawtooth chain are the valleys formed by
three neighboring sites (see bold lines in Fig. 1). Typically,
each site adjacent to a trapping cell is connected to several
sites of the trapping cell such that destructive quantum in-
terference between the different paths prevents escape of
the electron. Now one can occupy each trapping cell inde-
pendently by electrons with the two different spin projec-
tions. For U = 0, this yields many-electron GSs of the Hub-
bard model (1) by construction. For U > 0, double occu-
pancy of a trapping cell is forbidden, but a subset of these
states remain exact eigenstates: completely spin-polarized
states or states consisting of spatially sufficiently separated
localized electron excitations (like the two bold valleys in
Fig. 1) remain exact eigenstates also for U > 0. Positiv-
ity of the Coulomb term in the Hubbard model (1) implies
that such states remain in fact ground states for U > 0. In
fact, the same class of states are also exact eigenstates of
the t− J model (2). However, in this case the magnetic in-
teraction term is no longer a positive operator. Thus, for
sufficiently strong J > 0 other states may acquire lower
energy, as has been observed for the sawtooth chain with
J = 2 t, t′ =

√
2 t [18]. Therefore, the exact eigenstates

under discussion are ground states of the t − J model (2)
generally only for sufficiently small J .

One can tune the energy of the flat band to zero by setting
µ = µ0 with a suitable µ0. For the sawtooth chain with t′ =√

2 t, Eq. (3) shows that ε−(k) = 0 for µ = µ0 = 2 t. All
localized-electron GSs have zero energy for µ = µ0. It was
argued in [17] that the GS degeneracy is alwaysmacroscopic
by giving an explicit lower bound. An alternative lower
bound can be derived along the lines of section 2.6.4 of [8]:
take a unit cell of the lattice with l sites such that it contains
at least one trapping cell which does not overlap with the
corresponding trapping cell in the neighboring unit cells
(for the sawtooth chain one can use a unit cell of two valleys,
i.e., l = 4). Then each of these trapping cells can be either
empty or independently occupied by a spin-up or -down
electron. This yields 3N/l GSs, i.e., a lower bound for the
GS entropy per site S/N ≥ ln 3/l.

Two cases should be distinguished for the further analy-
sis. If all trapping cells are non-overlapping, spatial separa-
tion is automatically ensured and each trapping cell can be
independently occupied by up to one electron in the pres-
ence of repulsive interactions. It is straightforward to count
the localized-electron GSs and compute their contribution
to thermodynamic quantities for any model of this type [20].
Furthermore, the average over the localized-electron GSs
does not yield any macroscopic magnetic moment in this
case [20].

In the case where trapping cells overlap, two electrons
with different spin projection generally feel the repulsive in-
teraction if they are localized in overlapping regimes. This
favors parallel spin alignment in the GS for larger elec-
tron fillings. If all trapping cells are connected and each
of them is occupied by one electron, these arguments give
rise to a fully saturated ferromagnetic GS (flat-band ferro-
magnetism) [1–3]. In order to count all localized-electron
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Fig. 2. Specific heat C per site N in the grand canonical ensemble
for the sawtooth chain with t′ =

√
2 t for two values of the chemical

potential µ. Exact diagonalization (ED) results are for N = 12 sites.

GSs, we decompose the system into n-electron clusters,
each of which has a n + 1-fold spin degeneracy [19]. In
one dimension, a suitable labeling yields a mapping to a
dimer-type model which can be solved with a transfer ma-
trix method [19]. For the sawtooth chain with t′ =

√
2 t

we find a GS entropy per site S/N = ln((1 +
√

5)/2) =
0.48121 . . . [19], which should be compared to the above
lower bound S/N ≥ ln 3/4 = 0.27465 . . . and the lower
bound of [17]: S/N ≥ ln 2/2 = 0.34657 . . .. Note that the
dimer mapping can be applied to other one-dimensional
models like a model originally due to Watanabe [4] or two
kagome-like chains [7].

We emphasize that the localized-electron states should
form a basis of the GS manifold for U = 0 in order to ensure
completeness also for U > 0. This completeness condition
can be satisfied if the flat band is separated by a finite
gap from the next dispersive band, as is the case for the
sawtooth chain. However, if a dispersive band touches the
flat band, this gives rise to additional GSs.

3. Numerical results for the sawtooth chain

Now we illustrate and extend some of the above general
considerations by presenting a comparison with exact di-
agonalization (ED) for the sawtooth chain.

Fig. 2 shows the specific heat C in the grand canonical

ensemble for t′ =
√

2 t and two values of µ. Firstly, we ob-
serve a low-temperature maximum around T = O(10−2t)
in the ED results for both values of the chemical poten-
tial. This low-temperature maximum is (almost) the same
for a finite-U Hubbard model, the U = ∞ Hubbard model
(which is equivalent to the J = 0 case of the t− J model),
and even the t − J model with J = 0.2 t. This maximum
is well described by the effective dimer model [19], i.e., it
arises from the GS manifold which is split due to the de-
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Fig. 3. Specific heat C per site N in the canonical ensemble for
the sawtooth chain with n = N/4 electrons. All results are for the
U = ∞ Hubbard model, or equivalently the t−J model with J = 0.

viation µ 6= µ0 = 2 t. Comparison with other system sizes
than the N = 12 results of Fig. 2 reveals some finite-size
effects for µ < µ0 while they are negligible for µ > µ0 [19].
Note that the limit N → ∞ can be carried out in the effec-
tive dimer model (dotted line in Fig. 2) [19]. The remaining
states give rise to another maximum in C at a higher tem-
perature T = O(t). The area under this second maximum
is clearly smaller in the t − J model than in the Hubbard
model, reflecting the reduced Hilbert space. Finite-size ef-
fects are negligible in the high-temperature region [19].

We use the t − J model with J = 0 to discuss some
complementary aspects. The specific heat C of the effec-
tive dimer model vanishes identically in the canonical en-

semble since the energy of a localized electron state de-
pends only on the electron number n. Accordingly, the low-
temperature maximum in C disappears for t′ =

√
2 t, as

illustrated by the ED results for n = N/4 shown in Fig. 3.
However, a detuning t′ 6=

√
2 t leads to a splitting of the GS

manifold such that the low-temperature maximum reap-
pears, as demonstrated in Fig. 3 for t′ = 1.3 t (note that
finite-size effects tend to be bigger in the canonical ensem-
ble than in the grand canonical ensemble). This shows that
the low-temperature maximum in C is not only robust un-
der a small violation of the flat-band condition, but that
such a detuning actually helps to stabilize this feature.

The separation of the GS manifold at t′ =
√

2 t from
states with n > N/2 is controlled by the charge gap ∆µ
which in the Hubbard model opens linearly as ∆µ ≈ 0.46 U
for small U ≪ t [19] and saturates at ∆µ ≈ 2 t for large
U ≫ t [16, 19]. We quantify the excitations in the sectors
with n ≤ N/2 using the integrated number of states with
an energy of at most ∆E above the degenerate GS man-
ifold. This quantity is shown in Fig. 4 for the N = 12
Hubbard model with different values of U . The case n =
N/4 = 3 is representative of the generic situation while the
energy of the lowest excited state is smallest in the sector
n = N/2 − 1 = 5. We observe that an appreciable density
of states appears at rather low energies above the highly
degenerate GSs. The fact that the curves in Fig. 4 are very
similar for small U when ∆E is scaled by U indicates that
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Fig. 4. Integrated number of states with an excitation energy below
∆E for the sawtooth Hubbard model with t′ =

√
2 t, N = 12 sites,

and different values of U . The upper and lower panels show the
sectors with n = 3 and 5 electrons, respectively.
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ground states nGS for the sawtooth Hubbard model with t′ =

√
2 t

and U = 4 t. The upper and lower panels show the sectors with
n = N/4 and n = N/2 − 1 electrons, respectively.

these low-lying excitations originate from states which used
to be GSs for U = 0. The finite-size dependence at n = N/4
and n = N/2− 1 is analyzed in Fig. 5 for the example U =
4 t. In order to be able to compare different values of N ,
we divide the integrated number of states by the number of
GSs nGS (see legends of Fig. 5 for the values). We observe
that the density of low-energy excitations increases with
N , even when compared to nGS. It is not completely clear
at present whether this indicates the absence of a thermo-
dynamic excitation gap for N → ∞, which would imply
quantitative corrections to the dimer model for all temper-

atures T > 0. In any case, this large density of low-lying
excitations is probably the origin of the small deviations
for µ = 1.96 t in Fig. 2 between the effective dimer model
and the Hubbard model with U = 4 t.

4. Conclusions

We have argued that in highly frustrated Hubbard and
t − J models one finds a macroscopic GS degeneracy for a
certain value of the chemical potential µ0 or, equivalently,
in a certain range of electron fillings. A splitting of this GS
manifold, e.g., by a small deviation µ 6= µ0 or deviation
from the ideal flat-band geometry leads to a characteristic
low-temperature peak in the specific heat. These general
considerations have been illustrated with ED results for the
sawtooth chain. We have also exhibited a large number of
low-lying excited states in the sawtooth chain.
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