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1. Introduction

Conformally invariant field theories in 2D have gained much interest in theoretical physics
since minimal models have been discovered by BPZ in 1984 [1] because they have important
applications in 2D statistical mechanics and string theory. Soon afterwards the attention
was drawn to W-algebras by Zamolodchikov in 1985 [2]. They not only serve as a useful tool
in the investigation of integrable systems [3] [4], but also provide a promising approach to
the problem of classifying all rational conformal field theories (RCFT), which is one of the
outstanding questions in theoretical physics. Furthermore, this problem is of mathematical
interest, too, because of the connection of RCFT with certain invariants of 3-manifolds via
topological quantum field theory [5].

As far as the classification problem is concerned, the study of W-algebras themselves
in some sense provides a concept complementary to that of fusion algebras. These deal with
abstract properties of representations of conformally invariant operator algebras, leaving
the latter more or less unspecified. In contrast, when investigating YV-algebras one tries
at first to construct an algebra of local fields explicitly and then to get insight into RCFT
from its irreducible highest weight representations. Since each primary field of a YW-algebra
invariant chiral conformal field theory yields a highest weight representation the determi-
nation of all allowed highest weight representations of the W-algebra already determines
the field content of the theory. Furthermore, the fusion algebra can in principle be read
off from these representations.

Wh-algebras are extensions of the Virasoro algebra and therefore also called ‘extended
conformal algebras’ [6]. They correspond to the operator product expansion (OPE) of
conformally invariant chiral fields. The singular part of such an OPE yields a Lie bracket
structure, the regular part an operation of forming normal ordered products. Implementing
the so-called ‘conformal bootstrap’ the spin 4 algebra has been investigated by K. Hamada
et al. [7] and D.H. Zhang [8], the spin 6 algebra by J.M. Figueroa-O’Farrill et al. [9] and
some lower spin cases by P. Bouwknegt [10]. Recently many new W-algebras have been
constructed using the Lie bracket approach by R. Blumenhagen et al. [11] as well as by H.G.
Kausch et al. [12]. For this method there are more structure constants to be calculated
and the notion of normal ordered products needed is slightly more involved compared to
the conformal bootstrap, but it directly leads to a Lie algebra structure and thus admits
the definition of highest weight representations.

In this paper we want to discuss the highest weight representations of these algebras
in more detail. On the basis of references [11] and [13] we give restrictions for the existence
of consistent highest weight representations with some additional structure for the bosonic
algebras W(2,4) to W(2,8) as well as for the fermionic algebras W(2, 2) to W(2, 22).

The paper is organized as follows: In the next section we present some general results
concerning WW-algebras. In the third chapter we give the general outline for highest weight
representations of W-algebras. We will discuss the W-algebras that can be interpreted in
terms of Virasoro-minimal models in the fourth chapter. The fifth chapter contains our
explicit results about W(2, §)-algebras. The sixth chapter attempts a systematic discussion
of these results.



2. General theorems about VW-algebras

In this chapter we will review the basic results about W-algebras for the reader’s con-
venience. The presentation closely follows that of [11]; for proofs as well as for more
details we refer the reader to [14].

Let F be the algebra of local chiral fields of a conformal field theory defined on 2-
dimensional spacetime (with compactified space). Because of SU(1,1)-invariance F carries
a natural grading by the conformal dimension and is spanned by the non-derivative (i.e.
quasi-primary) fields together with their derivatives.

We define the Fourier decomposition of a left chiral field by ¢(z) =5, d(d)eZ P COF
We will call the Fourier-components ¢,, the ‘modes’ of ¢.

Denote the vacuum of the theory by |v) . Requiring the regularity of ¢(z) |v) at the origin
implies

On lv) =0 Vn < d(o) (2.1)
For ¢ = L this implies invariance of the vacuum under rational conformal transformations,
also known as ‘SU(1,1)-invariance of the vacuum’.

It is well known that the modes of the energy momentum tensor, a descendant of the
identity operator, satisfy the Virasoro algebra

= (03 = )8 pm.0 (2.2)

Lm7Ln: - Lmn
L Ll = (1= ) L +

with central charge c. A primary field ¢ of conformal dimension ¢ is characterized by the
commutator of its modes with the Virasoro algebra (2.2):

[Lma ¢n] = (n - (5 - 1)m>¢n+m (23)
Iff a field ¢ satisfies (2.3) for m € {—1,0,1} this field is called ‘quasi-primary’.

One has a more general formula for the commutator of two local quasi-primary fields
whereof (2.2) and (2.3) are special cases:

Let {¢; | i@ € I} be a set of non-derivative fields of integer or half-integer conformal
dimensions d(¢;) = h(i), which together with their derivatives span F. Define the following

constants:
d’L_] = <’U’ ¢i,—h(i)¢j,h(j) |U>7

(2.4a)
Cijk = (V| O, —n(k) Pin(k)—n() Pini) V) -
Then the Lie algebra of the Fourier components of left chiral fields has the form
n+h(i) —1
[sz m7¢j, + = Z ngkz m,n d)k: m—+n + dz] 571, m( 2h(l) -1 ) (24b)
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where C’fjdlk = Cjji . Using the notation h(ijk) = h(i) + h(j) — h(k) the universal poly-
nomials p;;, are given by

parlmn) = 3 ik (m + h(i) — 1) <n + h(j) — 1> (2.40)

T S
r,s€Z+

r4+s=h(ijk)—1

with
’ 2h(k) — 1)! = o o
Il = (1) — ( . (2h(i) —2—r—=t)|| 2h(j) —2—5—u).
’ (h(z)+h(])+h(k:)—2)!g) UI;[O
(2.4d)
The universal polynomials satisfy
pijk(—m, —n) = (=1) @OV p, 1 (m, n) (2.4e)

The Cjj;, are invariant under even permutations of their indices and change under odd
permutations by a factor (—1)(PO+2]+hG)+3]+ (k) +3])

It will be convenient to define an involution ¢ — ¢ on the quasi-primary fields
o = (1)@l (2.5a)

Like any involution on the quasi-primary fields this involution will uniquely extend to an
involution on F and implies that the structure constants d;; and Cjj;, are real. Sometimes

our choice of basis will yield imaginary C};; for a field ¢;, then one many choose qgj = 10;.
This field satisfies )
oF = _(_1)[d(¢)+%]¢_n (2.5b)

n

The structure constant @jjj will be real. All algebras in this paper do indeed have an
(anti-) involution of this form.

In addition to their Lie bracket structure W-algebras admit another important oper-
ation, namely that of forming normal ordered products (NOPs) of chiral fields. Usually
the NOP of two chiral fields ¢, x is defined in terms of Fourier components as follows

N(¢7 X)n N Z ¢n—ka + Z Xk¢n—k (26)

k<d(x) k>d(x)

€4y 1s defined as —1 for ¢ and x both fermions and 1 otherwise.

In this form it occurs in the OPE of ¢ and y, but it is not a non-derivative field, so
that e.g. equation (2.4) cannot be used to gain any information about its commutator with
other fields. For the NOP to be ‘well behaved’ under SU(1,1)-transformations we have to
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add some corrections to N (¢, x) defined in (2.6). With the assumptions and notations
from above we define the normal ordered product of two chiral fields by

N(65,0":) : — 2(‘”’" (n) (2(h(i) + h(rj) +n— 1)) - <2h<i) - 1>
X "N (¢;,0" " i)
S e (h(iﬂ‘") - 1) (Q(h(i) +h(j) +n— 1)> -1 (27)

n n
{k:h(ijk)>1}

2h(i) +n — 1\ [(o(ijk) — 1\ " Phidk)tng,
- ( h(ijk) +n ) <h<z‘jk> - 1) (o(ijk) + n) (h(ijk) — 1)!

where o(ijk) = h(i) + h(j) + h(k) — 1.
This field is quasi-primary and has conformal dimension h(i) 4+ h(j) +n.

The operation of normal ordering is (anti)commutative — e.g. N (¢, x) = N (x, ¢) for two
bosonic fields ¢, x —, but not associative. It satisfies (¢, dx) = —N (99, x) -

Formula (2.7) looks complicated but it simplifies if one considers NOPs of quasi-
primary fields with derivatives of L. Since all fields turning up in the commutators of a
W(2,0)-algebra can be written in this form the simplified form of (2.7) is quite useful:

N(65,0") =3 (-1)" () h (" )orwtos o)

r r
r=0 (2.7a)

W (20() +n+ D)\ (n+ D(n+3) .,
- (=D ( n ) 2(2h(j)+1+n)a ey

To derive formula (2.7a) first note that only fields ¢ with | d(¢;) —d(¢x) |< 1 can appear
in the last sum of (2.7). Comparing (2.4) with (2.3) one can read off the structure constants
ck.

So far the field content of F is infinite. Therefore one introduces the notion of non-
composite, ‘simple’ fields. To be more precise, if a basis for F can be obtained from a set
of fields ¢; using the operation of forming normal ordered products and derivation we will
say that the fields ¢; generate F. If all fields ¢; are quasi-primary and all of them are
orthogonal to any normal ordered product (with respect to the bilinear form defined by d
in (2.4a) ) we will call these fields ‘simple’. In the following we will denote the algebra F
of local chiral fields generated by a set of simple fields ¢1, ... , ¢, by W(d(¢1), ..., d(¢n)),
where d(¢) denotes the conformal dimension of ¢. If we additionally assume that ¢, is
the generator of the Virasoro algebra having conformal dimension 2 we will speak of a

W(2,d(¢2), ..., d(¢y)) algebra.

The reader should note that the above definition implies that any simple field must be either
primary or equal to the energy-momentum operator. Thus, in case of a W(2, d(¢2), ..., d(¢n))
algebra the fields ¢s, ... , ¢, are primary.



The commutators of normal ordered products are completely determined by the com-
mutators of the simple fields involved. This means that the whole Lie algebra structure of
the Wh-algebra is already fixed by the commutation relations of the simple fields it contains.

Thus a construction of a W-algebra with given simple primary fields {¢;} proceeds as
follows:

First construct all linearly independent NOPs which may occur in the commutators of the
simple fields. Then calculate the structure constants appearing in these commutators. At
this stage the structure constants connecting three additional simple fields will remain free
parameters. Finally the validity of the Jacobi identity has to be checked for three simple
fields. It is sufficient to check the coefficients of the primary fields on the right hand side
of these expressions.

This task has been carried out by R. Blumenhagen et al. [11] for one or two additional
primary fields with dimension up to 8 and additionally by A. Kliem up to dimension 10
[15] under the assumption of vanishing self coupling constant.

There is still some freedom in the normalization of the simple fields. Throughout this
paper we normalize the simple fields {¢;} in such a way that

C
d¢i¢j = 0ij

SFTen) (2.8)

Since dpr = 5, equation (2.4a) is consistent with (v|v) = 1.
3. General remarks about highest weight representations of W(2,4)-algebras

In this chapter we will give the general outline for highest weight representations (HWRs)
of W(2, d§)-algebras starting with some well known properties. For W(2, §)-algebras there
are only two simple fields. One of them is of course the energy-momentum operator L and
the second one will be denoted by ‘W’.

For a bosonic W(2,d)-algebra it is easy to see that the Cartan subalgebra is generated
by Lo and Wy. Therefore we will postulate for a highest weight representation that the
representation space contains a highest weight vector | h, w) with the following properties:

Lo |h,w) = h|h,w) (3.1a)
Wo |h,w) =w |h, w) (3.1b)
L, |hyw) =0 V¥Yn<O0 (3.1c)
Wy [h,w) =0 Vn<O0 (3.1d)

In order to be able to interpret the Lg-eigenvalue as energy we will require A € R, while
for the Wy-eigenvalue we will admit w € €.

Since negative modes annihilate the highest weight vector we should really speak of a
‘lowest weight representation’ because normally a ‘highest weight representation’ is defined
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by the vanishing of positive modes when applied to the highest weight vector. However,
due to the existence of the involution (2.5) we can neglect this subtelty. Positive modes
applied to the highest weight vector give non-trivial states that need not all be linearly
independent. The space spanned by these states divided by the linear dependences will be
called a W-algebra Verma module V (¢, h, w), generalizing the notion of a Virasoro Verma
module V (¢, h). In the language of the fusion algebra this is equivalent to building families
using the complete W-algebra and not only the Virasoro algebra.

The W-algebra Verma module is Lg-graded; it is a direct sum of Lg-eigenspaces. We will
call the difference of the Lg-eigenvalue of a Lg-eigenstate and h the ‘level’ of the state.

Let us now turn to the fermionic case. While in the vacuum representation one has
to choose the modes in Z + % for a fermionic field, one can now choose all indices of
fermionic fields in Z + % or in Z, corresponding to periodic or anti-periodic boundary
conditions respectively. Taking indices in Z + % yields the Neveu-Schwarz sector of the
algebra, whereas indices in Z give the Ramond sector. For an irreducible representation
of a W-algebra in the Ramond sector one can assume that W also satisfies (3.1b) though
in general fermionic generators cannot be included in the Cartan subalgebra.

We note that a priori more modes vanish on the vacuum (c.f. (2.1)) than on the
highest weight vector, even if h and w are zero.

The representation of a W-algebra must respect the commutator. Therefore in the repre-
sentation the commutator (2.4b) is equal to the following expression:

[¢m7 Xn]:t = QmXn — 6¢xXn¢m (32)

By abuse of notation we have not explicitly written the linear representation map here.

Applying this formula to W& of a fermionic W-algebra in the Ramond sector yields:
9 1
Wg [h,w) = §[W07W0]+ | by w)

= f(c,h) | h,w) (3.3)

since the anticommutator of a fermionic field with itself contains no fermionic fields. For
c fixed f(c, h) is a polynomial in h of order § — %

The first approach to the study of the HWRs of W(2, §)-algebras is based on the
isomorphism between the space of states and the space of fields. BPZ have used this
isomorphism in order to reduce the question of rationality to a study of null states in the
Verma module [1]. We will now show how one can implement this approach for W-algebras.

For W(2,8) it has been shown explicitly by R. Blumenhagen et al. [16], [15] that
for the rational c-values for which the WW-algebra is consistent, N (W, W) is a non-trivial
linear combination of fields containing at most one W-field. This has been achieved by
calculating the d-matrix of all quasi-primary fields with conformal dimension 16.
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In such a case one gets a quadratic relation for w with polynomial coefficients in h for
c fixed by considering:

0=N(W,W)o— > axXo) |hw)
= (N(W,W)o + Y _(Bacx)Civw — ax)Xo) | h,w)

= (WoWy + Z(Bd(X)Cé(VW —ax)Xo) |h,w)
X

= (w? + pr(h)w + pa(h)) | h, w)

where X is built up from L’s and at most one W and p; polynomials in h (c fixed). Factors
from commutations of two TW-modes have been absorbed in the coefficients 3. Denoting
the highest dimension of all X by « (which here is equal to 29), the degree of p; is bounded
by =% and the degree of po will not exceed 3. In this case one can expect at most two

2
branches of representations of the W-algebra, each one with h possibly a free parameter.

If one has a second null field one may find further conditions restricting the possible
values of h to a finite set. For a bosonic W-algebra N (W, OW) vanishes due to symmetry
considerations. In case of a fermionic algebra N (W, W) is zero such that examination of
these null states will not yield any nontrivial conditions. An interesting candidate for a
second null field in a bosonic algebra is a linear combination of A(W,9?W) with other
fields. For a field of type N (W, 0"W) the highest dimension of all fields appearing in the
generalization of (3.4) will be given by v = 2§ + n.

Since this approach is based on the isomorphism of the space of states and the space of
fields it designates the physically relevant HWRs of the W-algebra, but does not exclude
that there might be other not completely reducible ones.

The second approach is more fundamental. It is based on the observation of one of
us (R.V.) [13] that 4-point correlation functions taken between highest weights are not
associative. Equivalently, checking Jacobi identities of consistent WW-algebras in a HWR
instead of the vacuum representation yields non-trivial results. This leads to restrictions
on the set of HWRs which can be consistently defined for the VW-algebra, which is stronger
than the results obtained using the first method.

In order to make this task manageable one needs some more structure on the HWRs.

The W-algebra Verma module can be equipped with a sesquilinear form using the
dual W-algebra Verma module. The involution will then turn into the adjoint operation
with respect to this sesquilinear form. We will denote the linear form dual to |h,w) by
(h,w|. By definition (h,w | operates on the W-algebra Verma module in the following
manner:

(hyw| h,w) =1 (3.5a)
(h,w|s) =0 otherwise (3.5b)
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for all states |s) in Lg-eigenspaces with eigenvalues greater than h.

Since Ly and Wy leave Lg-eigenspaces invariant and (h,w | is nonzero only for the Lg-
eigenspace with eigenvalue h, the following equalities hold:

(h,w| Lo = h{h,w| (3.5¢)
(hy,w| Wy = w(h,w] (3.5d)

The linear form is defined such that any correlation-function is nonzero only if the sum of
the indices is zero. Additionally, the highest weight property implies that any monomial in
modes of fields applied to the highest weight vanishes if the sum of the indices is negative.
Combining these two remarks implies:

(hyw| L,=0 Vn>0 (3.5¢)

(hyw| Wy, =0 Vn>0 (3.5f)
Suppose that the following relation holds:

(hy w] @rmy 2my e Ok [y w) = (hyw| [[[@1,05 P2imols Pk ]2 [hyw)

Then one can calculate (h,w | ¢1py..- Gk, | how) and (h,w | ¢p—ny...01,-n, | hyw)
using the commutator-formula (2.4b). The symmetry property (2.4e) of the universal
polynomials and symmetry of the central term in (2.4b) implies:

k
(hyw] G1my - Grny | how) = [J(=DH2) (hw] dp—nyontt =y |Bow)  (3.5g)

=1

If the structure constants are real, the r.h.s. of (3.5g) is real and one can use the involution
(2.5a) for an easy derivation of equations (3.5a) — (3.5g). In general, however, even the
existence of an involution is not known a priori but (3.5a) — (3.5g) are always valid. Thus,
one should not use the involution for the calculation but contend oneself with (3.5a) —

(3.5g).

Obviously, similar remarks apply to the vacuum representation. As a consequence the
d-matrix is always symmetric.

When checking the Jacobi identities for the HWRs one has to use both (2.4b) and
(3.2). The Jacobi identity for three modes of the field W is:

0 = [[Wk, Wi]<, Wi] + cycl. (3.6)

A three point correlator is nonzero only if m = —(k + [) - which is possible only for a
bosonic algebra (or for a fermionic algebra in the Ramond sector). Let r, s > 0 then (3.6)
implies for a three point correlator:

0= (h,w| Wy, W_s]sWyis |, w)
— (hyw| W_s[Wrgs, W_p ]2 [ B, w) (3.7)
- <h7 w | W,T[W,S, WT+$]:I: | h, w>
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For a four point correlator we obtain, setting k = —n, [ = —m and multiplying from the
right with W, and assuming n,m > 0 (n # m assumed for a bosonic algebra):

0 =(h,w| [[W_pn, W_pn]+, Wi ]Wy | h,w) + cycl.
=+ (hyw| W_p, W_p]o W, Wy, | h,w

— (hyw| W [Win, W_p ] W, | hyw

(

)
)
+ (hyw| Wi, W_p |2 W_, W, | h, w)
— (hyw| W_p [W_p, Wi | £ Wy, | by w)

+ (hyw| Wy, W] W_, W, | b, w) (3.8)
=+ (hyw| W_,W_p, [Wp,, Wy, ]« | h, w)
— (hyw| W_p [Wi, W_p ]+ Wy, | b, w)
+ (hyw| W_ Wi [Wh, W_p ]+ |, w)
— (hyw| W_p[W_py Wi | £ Wy, | by w)
+ (hyw| W_ Wi [W_p, Wy ]+ | b, w)

where we have used (3.5g) after inserting the commutators as well as [W_,,, W]+ |h,w) =
W_, W, |h,w) .

Now it is clear what has to be verified for highest weight representations. First we
write down an expression of the form (3.7) or (3.8) with fixed indices. Then we use the
commutator-formula (2.4b) and insert the normal ordered products according to (2.7a) as
well as the structure constants. Next one commutes out the L’s and W’s as prescribed by
(2.2) and (2.3). If there still remain correlators containing W-modes, one has to insert the
commutator-formula (2.4b) again and carry on. Finally one ends up with a (hopefully)
non-trivial condition for the existence of the corresponding HWR. Of course, one would
like to work with arbitrary indices, but in practice this is very difficult since the summa-
tion limits of the normal ordered products depend on them. Since the generic expression
would be polynomial in the indices one can expect to obtain sufficient conditions if one
inserts several different combinations of indices. The degree of the generic condition can
be estimated by consideration of the degree of the universal polynomials (2.4c). In fact
we have never encountered new conditions after studying correlators with m and n greater
than 3 (or 4 for W(2,8)). Thus the number of correlators for a complete study in most
cases is much smaller than the degree of the generic expression.

As it should be, explicit calculation shows that all conditions are trivial if A~ and w
are equal to zero. Thus, a highest weight vector | 0,0) has indeed the properties of the
vacuum vector |v) described by equation (2.1).

4. The Virasoro-minimal case
It has been noticed by R. Blumenhagen et al. [11] that many W(2,d)-algebras can be
interpreted as the algebra of modes of primary fields in a Virasoro-minimal model. The

HWRs in this case have already been studied by one of us (R. V.) [13].
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Minimal representations of the Virasoro algebra are given by p,q € Z ., coprime and

2
co1og=9" (4.1a)
pq
A2 ()2
h(p,q;r,s):(pr ¢5) (p—4) , 1<r<qg—-1, 1<s<p-1. (4.1b)

4pq
If the field algebra of a minimal model has a local chiral subalgebra, this subalgebra
may be interpreted as a W-algebra; fusion considerations yield hints when it might exist.
A.N. Schellekens et al. have discussed this question in detail from the point of view of
modular invariant partition functions [17]. Since the conformal family of a primary field
is a representation of the Virasoro algebra, any primary field of a minimal model is a
candidate for a highest weight vector in a representation of the complete W-algebra. The
central charge, the dimension of the simple fields and all values of A must in this case be
given by (4.1) for some p,q¢’s. In the sequel we will choose p even and ¢ odd, which is
always possible for Virasoro-minimal models that contain W-algebras and are discussed
here.

In all cases where W-algebras can be related to Virasoro-minimal models the charac-
ters of the W(2, §)-algebra can be written as a finite sum of Virasoro characters. Now it is
possible to calculate the modular transformations and to deduce the fusion rules. This has
been done in [13] for the fermionic case where in addition to the modular transformations
in both sectors the fusion rules have been deduced for the Neveu-Schwarz sector.

We recall that the character x, of a representation of the Virasoro algebra is defined as
follows:

Xn(T) == try(c,n) (ezm(LO_ 2_64)7) (4.2)

where V(c, h) is the Virasoro Verma module. The character x}" of a HWR of a W-algebra
is defined analogously using the W-algebra Verma module:

XhW(T) =TV (¢ h,w) (62”@0_%)7) (4.3)

In cases where h can be written as h(p,gq;r,s) we will also write h, , and Y, , instead
of x,, (analogously for x}V). If a character of a W-algebra can be written as a sum of
Virasoro-characters the value of h for the HWR of the W-algebra must — according to
these definitions — be the smallest one of the Virasoro-HWRs.

All W-algebras discussed in this chapter are related to the A-D-E classification of
A. Cappelli et al. [18]. The simplest case is described by the proposition in chapter 4 of
[11]. These W(2, 0)-algebras are related to the (A,_1, Da,,) series where n is a half integral
positive number. They have § = (¢ — 2)(n — 1) and with p = 4n — 2 their central charge is
given by (4.1a). In this case the characters of all HWRs of the W(2, §)-algebra are given
by:

2 (4.4)



with odd j (for a fermionic W-algebra even j yields the Ramond-sector). This implies that
for the W-algebra we have HWRs with Virasoro h-values h%:

. _q ._p . J+1
hY = hij I<i<y, 1<j<5, i, €Z (4.5)
The (Dayy,Eg) series contains fermionic W(2,6)-algebras with 6 = ‘12;4 and
2
c=1- %. The characters of the HWRs are given by:
w . qg—1
Neveu — Schwarz sector :  x;" = X; 1+ Xi5 t Xiz T Xs11 > 1 S0 < N
4.6)
1 (
Ramond sector : x}V = Xiat+Xigs, 1 <i< qT
Consequently the values of BV of the HWRs of the W-algebra must be:
W . . q — 1
Neveu — Schwarz sector : h;" =min(h;1,h;5), 1 <i< 5
1 (4.7)
Ramond sector : hiW =his, 1<i< q?
W(2,8) at ¢ = —% can be interpreted as a member of the (A,_1, Eg) series which
(30—q)?

predicts a W(2,q — 5)—algebra at ¢ = 1 — e for ¢ and 30 coprime. The characters
of the HWRs of these models are given by one of the two following linear combinations of
four Virasoro-characters:

. _oqg—1
Xi,wi = Xi,1 T Xi11 t Xi19 T Xi29 1<i< 5
(4.8)
W — . q—1
Xi2 = Xi,7 T Xi13 + Xiir T Xi23 1<i< 5
Consequently the values of R of the HWRs of the W-algebra must be:
-1
hiy = min(h;1,hi11) , 1 <i < q?
1 (4.9)
hi,2 = min(h;7, hinz) , 1 <0 < q?

Furthermore W(2,8) at ¢ = ZL can be interpreted as the bosonic sector of W(2, 1)
which in turn is a member of the (Da , Eg) series with p = 12 and ¢ = 11 (c.f. [11] and
[13]). The characters of the HWRs of a W-algebra that can be interpreted as the bosonic
sector of a fermionic member of the (D% 11, ) series are given by one of the following
three expressions:

. _q—1
Xm:Xi,l‘FXi,?,leST
wo_ a1 4.10
Xi,2_Xi,4+Xi,871§Z§T (4.10)
_q—1
X%:Xi,5+x7;,1171§2§—2
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The different characters correspond to representations of the corresponding fermionic W-
algebra in the Ramond and Neveu-Schwarz sector where the Neveu-Schwarz sector splits
into X% and X% This implies for the corresponding values of h":

—1

hXV1 = mil’l(hi717hi77) , 1<i< qT
—1

h}%; = mi g1
i3 =min(h; 5, hin1) , 1<i < 5

Most of the HWRs of fermionic W-algebras and many of the HWRs of bosonic W-
algebras are explained by this argument. For a generically existent algebra the models
discussed in this chapter may be imbedded in a continuum of HWRs. Otherwise we found
that the only admitted values of h are the ones listed here. In particular, for all isolated

values of ¢ that can be parametrized by (4.1a), the Jacobi identity (3.8) restricts the values
of h to the ones of this chapter.

For more details we refer the reader to [13]. Although the formula given there for the
S-matrix as well as for the fusion rules were primarily deduced for the fermionic case they
generalize to the bosonic case without change.
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5. Explicit results about HWRs of some W(2,0)-algebras

In this section both algorithms explained in section 3 are applied to the known few cases of
W(2,0)-algebras. We will first check Jacobi identities and in some cases look for null fields
afterwards. The calculations were performed with a computer. The non-time-intensive
calculations were performed in REDUCE and MATHEMATICA™ while for commutations
and expansion of quasi-primary NOPs a special C-program had to be written.

We use the same fields and coupling constants like those given in [11]. Listing them again
would take too much place so we refer the interested reader to this reference (the definitions
(3.18) in [11] of the fields D5 and D6 with dimension 12 have to be interchanged in order

to be in agreement with the coupling constants given in the appendix of the reference).

When checking Jacobi identities (which we described as the second approach to the study
of HWRs of W(2, 0)-algebras) it is very convenient to calculate

dean(c7 h7 w) = <h’ w | [W—n’ Wn]:l: | ha w>

once for arbitrary n and to substitute this expression for all two point functions
(hyw| W_,W,, |h,w) with n > 0 afterwards. This saves one step when calculating (3.7)
or (3.8).

We will not list data for Virasoro-minimal cases in this chapter. The values of h we
obtained with the aid of the computer are exactly those described in the last chapter.
Nonetheless we will mention all W-algebras that correspond to Virasoro-minimal models
for the reader’s convenience and in a few instances we will stress some observations in the
Virasoro-minimal case.

Bosonic W-algebras
W(2,4)

First one has to check if W(2,4) admits arbitrary HWRs — or equivalently if the Jacobi
identities are satisfied for the HWRs of W(2,4). Calculating (3.8) for several different com-
binations of indices first yields non-trivial conditions which all become trivial as soon as the
relation of ¢ and the self coupling constant Cyjy; is inserted. Thus W(2,4) most probably

admits arbitrary HWRs (like W(2, 3)).

Next one may check for which values of the central charge one can construct a null field
involving N (W, W). Calculating the d-matrix of N (W, W) and the five other quasi-primary
fields with dimension 8 shows that there is such a null field for ¢ = 1, ¢ = —11, ¢ = —76,

c= —% and ¢ = —%. Except for ¢ = —76 there also is an additional null field involving
N(W,0*W). According to (3.4) this yields two different conditions that are quadratic in
w. So one can eliminate w?, determine w and insert it into both conditions. For ¢ = —11,
c= —% and ¢ = —% this yields a finite set of rational values of h where in the correspond-

ing HWRs these two fields are indeed null fields. Remember that this does not exclude the
existence of other HWRs for W(2,4) at these three values of the central charge for which
these two fields are not null fields. The following table contains those values of h where they
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are null fields:

W(2,4)
- — _ 444 — _1u
c=—11 c=—7 c=—1
W —1 W —1 W —1
h | w Cyw h | w Cyw h | w Cyy
0 0 0 0 0 0
0 11 _ 9 | _ 13905 1 0
1222 11 641861 14
1 _ 4T _10 834300 1 _ 9945
2 1012 11 18613969 16 10304
3 611 _12 250290 _3 1989
8 8096 11 19897691 112 113344
3 _ 1833 _ 14 | _ 1752030 13 13005
2 44 11 52457549 112 113344
1 47 _ 15 | _ _6859800 3 _ 49725
24 864 11 577033039 2 3542
1 _ 611 _16 23175 2 _ 1989
3 6831 11 2280763 7 7084
_1 1833 17 50985 _ 1 _ 153
8 8096 11 | 52457549 14 7084
1 _ 3055 _ 18 13905 3 _ 765
6 2484 11 | 52457549 7 644
13 _ 130331 | _19 55620
24 9504 11 | 577033039
We have included ¢ = —% in this table although it is a Virasoro-minimal model belonging

to the (D% 11, Eg) series because its existence was not obvious before studying null fields. For
this value of the central charge the two null field conditions we studied also admit h = % but
we have not included it in the above table because it obviously is an artefact which would
vanish when studying more null fields.

For ¢ = 1 both fields are null fields if w and h satisfy the following relation:

B
w = BT A (5.1)

For ¢ = —76 the single null field implies that w and h satisfy one of the following relations:

VE8247(103h + 307
w = (5.2a)
352988+/39

. V/88247(103h% + 665h + 1074) (5.2)
3529881/39 '

The fact that we have found ‘good’ relations between h and w for ¢ = 1 and ¢ = —76 which
do not restrict the HWRs to a finite set suggests that the corresponding models of W(2,4)
are degenerate but not rational.

It has been shown by H.G. Kausch and G.M.T. Watts [19] that there is a realization
of W(2,4) in terms of By. They have also deduced a determinant formula for W(2,4).
Reformulating the way we proved rationality here, one has to study the determinant formula
for the vacuum representation in order to show the existence of at least two independent,
non-trivial null states. It turns out that for each value of ¢ where one has at least one null
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state there are in fact infinetely many null states. Thus the minimal values of ¢ can be
parametrized by p, ¢ coprime and:

. 2(p—64)(3p — 59) (5.3)

pq

The three rational models we have found as well as both degenerate models have indeed
such a parametrization. For ¢ = 1 and ¢ = —76 a detailed examination of the determinant
formula shows that most of the null states it predicts are dependent. Thus for ¢ = 1 and
¢ = —76 we have sufficient null states for a degenerate, but nor for a minimal model.

With the aid of the determinant formula one can also examine null states in a general Verma
module und show that one can parametrize h for the three minimal models above as follows:

((r +12)% +1r3)p* — 2((251 + s2)11 + 2(51 + 82)72)pg + 2(5T + (51 + 52)°)¢° ¢ —2
4dpq * 24
(5.4)
Of course, this is not an exhaustive study of the minimal series of W(2,4) yet, but one may
expect that a complete understanding can be achieved by a generalization of the arguments
used here.

h =

W(2,5)

Since Ciyyy, is zero for W(2,5) (as for all W(2, §)-algebras with § odd), the Jacobi identity
for the four point correlator (3.8) can be calculated in one step. The resulting expression is
non-trivial. Obviously, if w appears in this expression it can appear only quadratic because
for vanishing self coupling constant the commutator of two W-modes will not contain any
W’s. The result is therefore a linear expression in w? with polynomial coefficients in h (for
c fixed). It is not difficult to eliminate w? using two results obtained with different indices.
So one can calculate the values of h for which HWRs of W(2,5) can exist.

The results for the values of ¢ = —% and ¢ = g are not listed here, because they are

contained in the (A,_1, Ds,) series and the h-values obtained are indeed those predicted in
chapter 4.

For ¢ = —7 we were not able to exclude any HWR satisfying the following condition:
9 (4h + 1)2(3h + 1)h?
= — 5.5
v 500 (5:5)

One can also explicitly construct null fields involving either N (W, W) or N (W, 9*W) for
¢ = —7. It turns out that each of these two fields is a null field exactly in the HWRs satis-
tying (5.5).

For ¢ = 134+ 60+/5 no restrictions could be found. For these values of the central charge
all HWRs seem to be admitted.

One can also calculate the three point correlator (3.7) for W(2,5). For ¢ = —2% and w?
nonzero this yields the condition A = —1%, which is not trivial, but contained in the results

1
obtained by calculating (3.8).
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W(2,6)

In the case of W(2, 6) evaluation of the Jacobi identity (3.8) first yields conditions for generic
c which all become trivial as soon as the correct self coupling constant C{}y; is inserted. For
the irrational values of the central charge where Cy}y;, is zero, one has to insert ¢ as well
before the condition becomes trivial. Thus W(2, 6) should have arbitrary HWRs for generic
c (like W(2,4)).

Surprisingly, for both values of the central charge where c is rational and Cy}};; vanishes
(W(2,6) is inconsistent for ¢ = —2), there are restrictions on the HWRs of W(2,6). Even
though the HWRs at ¢ = —51—136 were already discussed, we believe this result to be remark-
able enough that we also list the values of h here although they could easily be evaluated
according to the results of chapter 4.

For W(2,6) we have also studied restrictions on the HWRs coming from the presence of
null fields. Tt is possible to construct exactly two null fields involving either N (W, W) or
NW,*W) for ¢ = =17, ¢ = =28 and ¢ = —332. Postulating that they are null fields also
in a HWR restricts the HWRs to a finite set. For ¢ = —% there is a null field involving
N (W, W), but there is none involving N (W, 9*W). Nonetheless it has been possible to con-
struct a null field involving N (W, 9*W) as well as all 28 fields with dimension 16. This also
restricts the values of the representations in which these two fields are null fields to a finite

set.

We list the rational values of h that belong to these four minimal models in the following
table (we believe that the irrational solutions of these conditions would vanish when studying
more conditions). The two values of ¢ with vanishing C}};;, that we have discussed above
are also listed in this table.

W(2,6)
__516 - _ - _ — _ 306 — _59% — 1420
c 13 c=—47 c=—17 |c=—-2 | c=—% c=—5
h w? h w? h h h h
17 5 19 49 59
0 0 0 0 0 T 28 0 11 0 9 0 17 17
10 — 3| B3 1r\ _73 _ 17| _27 _ 50 _ 60
13 0 2 0 0 7 55 11 27 9 17 17 17
_1r 0 _5 0 3 _5|_s8 1 |_64 _13|_30 _52
13 3 4 28 55 5 27 9 17 17
_2 0 _15 0 2 1 3 .55 _8 | _31 _58
13 8 3 7 55 27 3 17 17
_22 0 _2 0 -5 15 e —25 _T | _39 _5
13 12 12 28 55 9 3 17 17
_ 20 0 _3 | __5 9 _3 _23 _46 _ 57
13 2 15022464 4 11 9 17 17
_Ly__ 7 ) _5 __5 _5 4 _ 20 _48 58
13 7366034 1 3755616 7 11 9 17 17
For ¢ = —17, c = —%, c= —% and ¢ = —% we have also determined the values of w

itself, but we have not presented them here because they are too complicated. Except for
the vacuum representation in all four cases all values of w are nonzero except for h = % and
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c= —%. Especially for ¢ = —17 one has two HWRs with A = 0, but only for one of them

also w = 0 holds.

Although the model belonging to ¢ = —% is a Virasoro minimal model we have also listed
it in the above table because in order to see that it exists one had to study null fields first.

This model is a member of the (A4,_;, Eg) series.

Additionally one can construct a null field involving N (W, W) for ¢ = —%. This field
is a null field in the HWRs satisfying one of the following two relations:

B 114/436412491110865(65725h2 + 1323915h + 6665504 )h

w = 5.6a
26184749466651900+/209 ( )
\/436412491110865(144595h3 + 4554174h? 4 47823641k + 167439222) (5.6b)

w = — .

5236949893330380+/209

Since there neither is an additional null field with dimension 14 involving N (W, 9*W) nor
even one with dimension 16 involving N (W, 9*T) and in contrast to the other values of ¢
the null field condition with N (W, W) has a rational polynomial as solution we doubt that

there is a minimal model corresponding to W(2,6) at ¢ = — 122,

In complete analogy to WW(2,4) one can derive a minimal series for WW(2,6) by consideration
of Gs. Insertion into the formulae derived by J.M. Figueroa-O’Farrill [20] for Casimir algebras
in general yields the following parametrization of the minimal series of W(2,6):

2(12p — 7¢)(7p — 4q)

c=— - (5.7)

We have observed that for all values of ¢ contained in the above table there is indeed such a
parametrization, but also the non-minimal value ¢ = —% has such a parametrization. We

suppose that the explanation of such degenerate but not minimal models is analogous to the
case of W(2,4).

W(2,7)

Since W(2,7) is consistent only for ¢ = —% one can easily calculate (3.8) for ¢ fixed
which simplifies calculations. The following condition was deduced for HWRs of W(2,7)
at ¢ = —2?5:
,  (2h +1)*(16h + 5)2(16h + 9)h? (5.8)
w’ = :
4167450

This indicates that there are two (possibly isomorphic) branches of representations of W(2, 7),
each with infinitely many HWRs.

17



W(2,8)

While for ¢ = —% the W(2,8) is consistent with vanishing self coupling constant and the
same procedure when checking a Jacobi identity as for W(2,4) — W(2,7) can be applied, it
is also consistent for several values of ¢ with non-vanishing self coupling constant. In these
cases the Jacobi identity (3.8) yields results with cubic polynomials in w. Elimination of w
is therefore more complicated than for any other W-algebra we studied. One has to take
three different results, eliminate first w?, then w? and has to insert the resulting expression
for w in a fourth result of (3.8). Note that this procedure gives the values of w and not only
those of w?.

For six values of ¢ where W(2,8) is consistent the Jacobi identity argument shows that
only finitely many HWRs exist. Three of them are Virasoro-minimal (¢ = —%, = —%
and ¢ = %) and therefore not listed here. Except for ¢ = —% the self-coupling constant
Ciw does not vanish. These two algebras belong to the (Dgy, Eg) and (A, 1, Eg) series.
The structure of these algebras is very similar to those of the (A,—1, Da,) series as was shown

in chapter 4.

For the remaining three values of the central charge the values of h for their HWRs are listed
in the following table.

W(2,8)
—_ _ 2 _ _sle
c=—-23 c= - c= R
23 27 111 125
0 2| 0 =1 0 55 T3
1 29 54 112 129
0 2 4 7 B T3 T
1 _Z | _1 _s0 | _er _me _130
32 5 7 23 23 23
151 | _20 _10s| _s1 _118 _131
16 8 5 35 23 23 23
317 | _1r 12| _o1 119 132
4 32 7 35 23 23 23
1 3 | _2 _1w| _9 _120 _133
16 7 35 23 23 23
3 24 _ 143 | _98 122
32 7 35 23 23
7 _ 2% _103 124
8 7 23 23

It is no error that for ¢ = —23 we have listed A = 0 twice. There are indeed two HWRs for
h = 0 one with vanishing w and one with w # 0. We will come back to this observation in
chapter 6.

We have not listed the values of w here since they are not only very large numbers but also
irrational and sometimes even imaginary. Although we have calculated them we will not
even give the formulae that could be used for calculating w, because they are nasty, too. We
simply note that for A = 0 there is a HWR with w = 0 for all values of ¢. For the specific
values of ¢ listed above these are the only values of h yielding vanishing w.

In the basis of F we used the self coupling constant Cyj is imaginary for the values of
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¢ listed above. Thus one should replace the field W by W and then one may define a
consistent, involution (iW)} = —(iW)_;.

_ 1015

5~ it is necessary that h and w satisfy one of the following relations:

For ¢ =

v/391391(938816h3 + 58511028k + 1215416554k + 8414752437)h (5.92)
w = )
67248090+/19246721816706711

v/391391(20653952h* + 1766242840h3 + 56646740674h> + 807540438431k + 4317513425295)
1479457980+/19246721816706711

(5.9b)
We are quite confident that there are indeed two non-isomorphic branches of HWRs for
W(2,8) at ¢ = —182 corresponding to (5.9a) or (5.9b) respectively. Note that this is the
maximum amount of representations that can exist if one uses the knowledge (3.4) about

NW, W).

For ¢ = 350 £ 252v/2 one finds no restrictions for the HWRs. So, for these values of
the central charge all HWRs seem to be admitted, like for the irrational values of ¢ where
W(2,4), W(2,5) and W(2,6) are consistent with vanishing C}/’y;; although now the self
coupling constant is non-zero.

Fermionic W-algebras

Most of the fermionic W-algebras are contained in some series mentioned in chapter 4.
Therefore we will list only a few results on fermionic WW-algebras here. Since all fermionic
Wh-algebras discussed here exist only for isolated values of ¢ it is sufficient to check the Jacobi
identities. This already yields the proper minimal models.

The algebra W(2, g) is the simplest W(2, §)—algebra that has restrictions for the central
charge; it is consistent only for one value of ¢. As it is even possible to perform all calculations
for the verification of the Jacobi identities ‘by hand’ it is a good example to get acquainted
with the procedure. This algebra has already been studied by one of us (R. V.) [13] earlier
along with W(2,1) at ¢ = Z. There also have been earlier studies of W(2,9) at ¢ = —35
[21]. Our results are compatible with the original ones although the four point correlator
originally examined was not of the form (3.8) but of the form

0= (h,w| [W_pn, W_p] 1+, Xonin] | h,w) + cycl. (5.10)

Wlth Xm+n = [Wm, Wn]+

W(2,2) and W(2, ) both exist for ¢ = 1 — 86 in addition to Virasoro-minimal values
of ¢. Therefore we will discuss these algebras in more detail below. The algebra W(2, 171) is
consistent only for ¢ = —% and W(2, 12—‘3) is consistent for ¢ = :,?—4, c= —% and ¢ = —%.
All these algebras correspond to Virasoro-minimal models. Thus the corresponding values

of h are indeed given by (4.5).
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W(2,3

The algebra W(2, %) is consistent for five values of the central charge. The values ¢ = %,
c = —%, c = —% and ¢ = —% belong to Virasoro-minimal models and therefore the

argument of chapter 4 yields the correct values of h.

¢ = —35 is interesting because it belongs to the (1 — 8J) series. Here we list the HWRs

which are allowed for ¢ = —35 after calculating several four point correlators.
9 _
W(2,9) ¢=-35
Neveu-Schwarz sector | Ramond sector
h h w?
7 49
0 T8 577728
_3 _9 _ 49
2 8 | 2310912
4 35
B 2 0
7 51
~5 — 1 0
11 59
1 0| 0

W(2,7

There are six values of ¢ altogether for which W(2, %) is consistent. The values ¢ = %,
c = —%, c = —%, c = —43% and ¢ = —8—265 are Virasoro-minimal and therefore not listed

explicitly here. The following table contains only the values of h for which HWRs of W(2, %)
might exist in the Neveu-Schwarz-sector as well as in the Ramond sector for ¢ = —59.

W(2,2) c=-59

Neveu-Schwarz sector | Ramond sector
0 _ 17 _ 99 _ 131
7 40 56
_5 _ 31 _ 91 _ 115
2 14 40 56
_ 12 _ 13 _15 _ 13
5 7 B 8
_21 139
10 56

Since the values of w? are important for the explanation of the RCFT, we give the formula

that can be used to calculate w? in the Ramond sector although we do not list the values of
w? explicitly:

, (91 + 40R)(99 4 40h)(115 + 56h)(131 + 56h)(139 + 56h) (177 + 400k + 192h2)
w =
66399626487398400

(5.11)
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6. Interpretation

We first consider W-algebras which exist for generic ¢ and contain rational models imbed-
ded in continuous families of irrational ones.

Finite dimensional Lie algebras as well as the Virasoro algebra have arbitrary HWRs
(which are generally not irreducible). Obviously, this is not true for all W-algebras. This
fact demonstrates once more that W-algebras should not be regarded as Lie algebras
(compare e.g. A. Bilal [22]). If however a W-algebra can be related to a Lie algebra one
expects neither restrictions on the central charge nor restrictions on h. Consequently, we
have been able to deduce conditions for the existence of consistent HWRs of a W-algebra
only if the corresponding value of ¢ was isolated, but not for the generically existent W-
algebras W(2,4) and W(2,6). It had been conjectured by P. Bouwknegt [10] that these
algebras are related to affine Lie algebras and a classical version of W(2,6) had been
constructed by J. Balog et al. [23]. Recently, H.G. Kausch and G.M.T. Watts have shown
that one can indeed construct the quantum algebras W(2,4) and W(2,6) as algebras of
By and Gy respectively [19]. If for a W-algebra an explicit construction in terms of a
Lie algebra is possible one can also construct arbitrary HWRs of this algebra using the
universal enveloping algebra of this Lie algebra. One should however keep in mind that
the models have special properties for certain discrete values of ¢. This is a pure quantum
effect which does not show up in the classical versions. In particular, there are two values
of ¢ yielding vanishing C’VMV/W for which there are only finitely many HWRs of W(2, 6).

More generally, both W(2,4) and W(2,6) have minimal series of which these two RCFTs
are simple examples. The corresponding values of ¢ for the minimal models should be
given by (5.3) or (5.7) for W(2,4) and W(2, 6) respectively. Studying null fields we have
been able to construct some of these minimal models explicitly.

For W(2, 4) we have seen that ¢ = —11, ¢ = — 1 and ¢ = — 4 yield minimal models while
the models corresponding to ¢ = 1 and ¢ = —76 most probably are only degenerate. Since

for ¢ = 1 there is a free field construction in terms of one free boson (c.f. [12]) one knows
much about this model which lies beyond the scope of this paper.

For W(2,6) the representations at ¢ = —17, ¢ = —%, c= —% and ¢ = —1‘11% are those
minimal models whose null fields we have been able to construct explicitly. The HWRs

for c = —% seem to correspond to a degenerate but not minimal model of W(2,6).

In the cases where a W-algebra is consistent for irrational values of the central charge
we have not been able to deduce any conditions. This applies to W(2,4) at ¢ = 86+ 602,
W(2,5) at ¢ = 134£60v/5, W(2,6) at ¢ = 194+1121/6 and even W(2, 8) at ¢ = 3504+252+/2
although here the self-coupling constant is nonzero. This is in remarkable contrast to the
rational isolated values of ¢, for all of which at least one condition was found. This result,
however, is not unexpected because it has been shown by C. Vafa [24] and G. Anderson et
al. [25] that RCFTs should yield rational values of the central charge as well as rational
conformal dimensions.

Two cases of field theories with a degenerate but apparently not rational W(2,6)-
algebra are closely related to the Virasoro-minimal case discussed in chapter 4. More
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generally, degenerate models of the Virasoro algebra are given by:

c=1-24a} (6.1a)
ar =apEy/1+ad (6.1b)
1
hieir,s) = ((aor + aps)” — (o + 1)) (6.1c)
For W(2,5) at ¢ = —7 and W(2,7) at ¢ = —2 equation (4.1) still gives the correct

parametrization of ¢, but with p = 1. This observation generalizes to Virasoro-degenerate
models with p = 1 and 2 < g € Z because H.G. Kausch [26] has shown that a BRST-
construction for the W(2,§)-algebras belonging to this (1,q) series is possible where —
using the notation of (4.1) — d = h(1,q;1,3) holds. So one can expect an infinite number
of HWRs of these Wh-algebras like for the generically consistent algebras. Our explicit
calculations based on either Jacobi identities or on null fields suggest that for these W-
algebras one does indeed have infinitely many HWRs, the only difference between the
generically existent algebras and them being that we have two branches here with one free
parameter h in each branch instead of two parameters. For w = 0, h takes on exactly those

values that correspond to Virasoro-degenerate models, thus motivating the linear factors
of (5.5) and (5.8).

There are three more examples of W-algebras which are degenerate but apparently
not rational, because only N (W, W) is a linear combination of the other fields with dimen-
sio 28. They include W(2,4) at ¢ = —76, W(2,6) at ¢ = —122 and W(2,8) at ¢ = — 1915,
Here again there are two branches of HWRs each of them with h as free parameter (w is
determined by h). Since here Cl/y;, is nonzero the formulae for these two branches are
distinct. One of the branches does not even contain the vacuum representation and there-
fore these two branches of HWRs cannot be isomorphic. We guess that this observation
can be generalized to a series for all W(2, §)—algebras with § even, but not even a proper

parametrization for ¢ is known yet.

Now let us consider the rational W-algebras. These permit a good criterion for the
classification of their RCFTs. Let h,,;, be the smallest possible h-value and define

&= c — 24hmin (6.2)

One always has ¢ > 0, since ¢ describes the asymptotic behaviour of the dimension of the
L eigenspaces, as discussed in Appendix B.

Calculating ¢ for all sets of HWRs we have studied one finds a class of WW-algebras that yield
¢ < 1. These are exactly the WW-algebras that correspond to Virasoro-minimal models. ¢

is of the form ¢ =1 — %.

Another group of HWRs of Wh-algebras yields ¢ = 1. Apart from the well known
unitary models (see P. Ginsparg [27] and E.B. Kiritsis [28]), this group consists exactly of
those Wh-algebras that exist for ¢ = 1 — 8 or ¢ = 1 — 3. The members of these series
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admit finitely many HWRs that can be parametrized according to (6.1) using rational r
and s. This family contains W(2,4) at ¢ = —11, W(2, %) at ¢ = —35, W(2,6) at ¢ = —47
and ¢ = —17, W(2, 1—25) at ¢ = —59 and W(2,8) at ¢ = —23. To be more specific let us
look at two special cases of (6.1):
h(c;r,r) =r%0f — of (6.3a)
h(c;r,—r) = r*ad + 1 — af (6.3b)
Let m := 2a3. Note that for the cases listed above m € % holds. With this definition we
obtain from (6.3):

h(c; %, %) = % ; % (6.4a)

he: 2mn+4’ _an—l— D= 8mn—|— 16 % (6.4b)
2

h(c; %, %) = Qn—m; % (6.5a)

(C;mZQ’_miz)zzr:M_% (6:50)

Empirically, our calculations for the (1—8¢) — series yield in the fermionic case the h-values
of (6.4) with n € Z, n < m and n = 2m and in the bosonic case the h-values of (6.5)
with n < 2 and n = m. For the fermionic algebras even and odd n respectively yields
HWRs in the Neveu-Schwarz and Ramond sector. For the bosonic (1 — 3J) — series one

has to take (6.4) withn € Z,, n <2m or n = 4m.

Here the parametrization using rational parameters is pure phenomenology. One of us
(M. F.) has studied these algebras in detail [21]. He shows that the characters of the

representations of these W-algebras can be written in terms of Jacobi-Riemann-Theta-
. (kr—x2 |
functions, namely ©) x(7,0,0) = > 7€ I with A closely related to n and the

modulus k given by m as appearing in (6.4) and (6.5). Moreover, these characters form a
finite dimensional unitary projective representation of the modular group and yield proper
fusion rules. This explains the rational indices used above.

Most of the minimal models of W(2,4) and W(2,6) have ¢ > 1, in particular W(2,4)
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at ¢ = —%, W(2,6) at ¢ = —% and ¢ = —%30. This leaves two examples that do
not fit into any of the above patterns, namely W(2,8) at ¢ = —@ and ¢ = —%. The

latter model apparently belongs to a series whose first members coincide with particular
minimal W(2,4) and W(2, 6) models. As a first observation, W(2,4) at ¢ = — %2 W(2,6)
1420 3164

at ¢ = —=77 and W(2,8) at ¢ = —=33* seem to belong to a series because they comprise

exactly n —1 HWRs if one writes ¢ = 2 with m,n € Z. More convincing is the following

consideration:
First, let us look at W(2,4) and ¢ = —4d e e = % We can use the 10 possible values
of h to calculate:
T™ =1 (6.6a)
tr(TV) = —e2™ % (6.6b)



where T is the representation matrix in the space of characters of the modular transfor-
mation that translates the modular parameter 7 to 7 + 1. (6.6b) is valid for all N that
are not multiples of 11. For W(2,6) and ¢ = — 1420 " or equivalently é = 22 an analogous

17 17
calculation leads to:

T = ¢*™'51 (6.7a)

tr(TN) = —e27i% (6.7b)

. will hold for a that are not multiples o . Finally, tor ,8) at ¢ = —=53~

6.7b) will hold for all N th Itiples of 17. Finally, for W(2,8 20
(¢ = 33) one can use the 22 values of h we obtained to calculate:

T3 = 2781 (6.8a)

tr(TN) = —e2™% (6.8b)

(6.8b) is valid for all N that are not multiples of 23. This ‘nice’ behaviour of 7" suggests
that it should be possible to find the models corresponding to these three RCFTs. The
modular group can be characterized by the relations S? = (ST)3 = 1. Because (6.6) —
(6.8) yield additional relations for T itself, it is probable that these HWRs correspond to
a (possibly projective) representation of some subgroup of the full modular group. For
W(2,4) and ¢ = 12 this might be I'(11).

Since the values of ¢ can be parametrized by the conformal dimension § and

46— 1)

-1 (6.9)

&=
it is plausible to assume that a complete series of W(2, §)-algebras with § even and ¢ given
by (6.9) exists.

It is remarkable that there exists a W(2, 2)-algebra with ¢ = %, namely the tensor product
of two Virasoro algebras with ¢ = % Here at least 7% = 27161 . The behaviour of
tr(TY) is slightly different; the pattern of the phase is the same, but the modulus behaves
differently. Nevertheless, W(2,2) also has two null fields with dimension 26 and 30 — 2;
like the other members of this series. Thus, it is possible that this W-algebra should be
considered as a member of the same series.

Finally there is one HWR with ¢ > 1 which we have not discussed yet. The HWRs of

W(2,8) at ¢ = —l72 yield ¢ = %. Remembering that Zs-symmetric models have ¢ = % we
can guess that W(2,8) at ¢ = —%2 is related to a Zs-symmetric model with the ground-
state-energy shifted by h,in = —70. Under this assumption it is possible to identify nine

of our h-values with primary fields in a Zs-parafermionic model (c.f. V.A. Fateev et al.
[29]). If we now consider the restriction 7" of 1" to the remaining six representations we
obtain:

T7 = 251 (6.10a)
tr(TN) = —e2™5N (6.10D)
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(6.10b) is valid for all N that are not multiples of 7. Here, a model producing the remaining
six values of h is easy to find. It is just a tensor product of two Virasoro-minimal models
with p=2and ¢ = 7.

The parafermionic model yields a 15-dimensional representation of the full modular group
with ‘good’ fusion rules. The tensor product of the Virasoro-minimal models gives a 9-
dimensional representation. Taking them together yields a 24-dimensional representation
of the modular group. On this representation one can define naturally a representation
of & that commutes with the representation of the modular group. The symmetric and
antisymmetric spaces are 15 and 9 dimensional invariant subspaces. The 15-dimensional
symmetric space (or ‘uncharged’ space) yields our model; it is not identical with the original
parafermionic model. In terms of characters this action of S; determines some of the
characters x"V as linear combinations of parafermionic and Virasoro characters completely.
The remaining linear combinations have to be determined by explicitly calculating the
dimensions of the first levels of the Verma-module V (¢, h,w). In terms of the partition
functions Z¥ of the parafermionic model and Z% of the Virasoro model the new model
yields

Z==-(2"+(2")?) (6.11)

1
2

Explicit expressions for the characters of this model, its S-matrix and fusion rules are given
in Appendix A. Since Zs-symmetric models are special minimal models of W(2, 3,4, 5),
there should be a connection of W(2,8) and W(2,3,4,5) at ¢ = —7172. It is worthwhile
noticing that the representation of W(2,3,4,5) at ¢ = % is unitary.

Obviously the classification of the HWRs of W-algebras according to their value of ¢
is a very natural way to reproduce families which share the same structure. In order to
elucidate the importance of ¢ we will give an upper bound for it in the case of semirational
theories. We call a conformal field theory ‘semirational’ if S transforms the characters into
finite sums of characters. Of course, all rational theories are semirational. Since one may
assume that the vacuum representation exists for any WW-algebra we have h,,;, < 0 which
implies ¢ < ¢. Thus any upper bound for ¢ is also an upper bound for c.

Proposition: For any algebra W(d(¢1), ..., d(¢x)) generated by k fields that corresponds
to a semirational theory the following inequality holds:

0<ec<k (6.12)

or c=0and h =0.

The proof is an easy adaption of an argument of Cardy [30]. For completeness it will be
spelled out in Appendix B.

For unitary representations h,,;, = 0 holds, implying:
O<c<k (6.13)
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In the case of a W(2,d)-algebra this proposition implies that rational theories can exist
only for those values of the central charge where

c<c<?2 (6.14)
holds. Indeed 0 < ¢ < 2 is true for our rational theories and the isolated rational values of
c always satisfy ¢ < 2 (in fact even ¢ < 1).

7. Conclusions

We have proved that many of the new W(2,d)-algebras discovered in [11] and [12] are
rational and argued that others are not. For the rational cases, we have obtained necessary
conditions on the HWRs, which restrict them to a finite set. We are confident that all of
these candidate HWRs do indeed exist. On the one hand, in the cases where a conceptual
understanding of the algebras is possible we have found exactly the expected HWRs. This
is a check both for our algorithms and for the theoretical arguments, which often are not
yet quite rigorous. On the other hand, our list of h values satisfy the stringent consistency
conditions which follow from modular invariance (as described by S.D. Mathur et al. [31]).

For Wh-algebras with isolated central extensions ¢, our method consists of the study
of Jacobi identities in four point correlators. In principle, three and five point correlators,
but no higher ones, could give further restrictions. In a few cases, however, we explicitly
verified that this does not happen.

For W(2,4) and W(2,6) we had to use a different method. Here interesting RCFTs are
hidden in the continuum of ¢ values. To find their permitted HWRs, we imposed the
physical condition that null fields vanish in all representations. Our explicit results will
contribute to a complete understanding of the minimal series for these two VW-algebras.

Unfortunately, our W(2, §)—algebras do not include new unitary ones. Nevertheless,
they yield universality classes of continuous phase transitions in statistical mechanics, and
they help to complete the classification of all RCFTs, which is of general importance.

The structure of some of our new RCFTs was so unexpected that computer data were
necessary before one could try to understand these models. Now most of the HWRs have
a good classification. For some, however, among them some belonging to rational theories,
the understanding still is rather rudimentary. Open questions include the determination
of the characters of W(2,4) with ¢ = 2, W(2,6) with ¢ = 22 and W(2,8) with ¢ = 2
and their representations under the modular group as well as the interpretation of most

theories that are not rational.

Although one may assume that with the results of this paper the classification of the
W(2, §)-algebras and their representations and of the corresponding RCFTs is well under
way, the many open questions even in this special case show that there is still much work

to be done until all RCFTs are classified. The study of WW-algebras and their HWRs will
be an important tool in this context.
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Appendix A: The parafermionic model and W(2,8)

We will give explicit expressions for the characters of the HWRs of W(2,8) at ¢ = —7%
here. It is important to notice that the characters do not change if the ‘energy’ is shifted

as described in chapter 6.

In chapter 6 we stated that the values of p and ¢ are fixed to 2 and 7 respectively.
Thus we will neglect the dependences on p and ¢ in the following. It is well known (see
e.g. A. Rocha-Caridi [32]) that the characters of Virasoro-minimal models are given by the
following expression:

Xro(m) =7 n(r) Y (g™ —¢™) (a.1)

keZ
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with ¢ = ™7, ap = hyyoqk.s and by = hyyogk.—s and n(7) defined as

%H (1—4q") (a.2)

The representation matrix of S (the modular transformation 7 — —771) in this case is:

’ 2 ’ / / !
Sr =4 —(—=1)" trstlgin T sin Tq55 (a.3)
’ bq q b

The characters for the tensor-product of two Virasoro-minimal models are given by the
product of the characters of each part. Consequently the full matrix of S is given by:

(FL,s1)5(rhosh)  arlhesh arhysh
— Sisig (a.4)

(7*1751)’(7'2732) - T1,81~T2,52

According to D. Gepner et al. [33] the characters of the parafermionc Z,,-models are given
by:

X (1) = 0(r)eh () LE{0,[Glhme (L 2n—1}l-me2Z  (a5)

where the ¢!, are the so-called string functions (c.f. e.g. V. Kac [34]). The matrix of S for
the parafermionic model is given by:

’o immm! /
blm 1 L, r(l+ 1)l +1)
n(n+ 2) n+2 (a.6)

U'm' U m’ n—1U' n—m’
Sl,m _bl,m +b

The characters "V of the W(2, 8)-model can now be expressed as linear combinations of
the characters x* and y”. Most of the linear combinations are determined by examining
symmetry under S;. In order to determine the remaining free coefficients one has to
calculate the dimension of V' (¢, h,w) on level one (in two cases) and on level four (in one
case). Additionally, we checked equality of the characters and the dimensions of V (¢, h, w)
up to order two in all cases, up to order seven for the vacuum character and up to order
four for x'%. Note that the characters of the anti-symmetric space are zero if all So-charges
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are neglected.

1
w L1 L2 P
X1 = Xh=0 — _(X1,2 X1,2 — Xz,o)
1
w._ W _ p L1_ L2
X2 = Xh:f2_74 = §(X1,5 —X1,1 X1,1)

X3 = X1z = %(X(I)D,z + X0, -2)

X = 0 e = 5 O )

X8 =X = %(xf,’gle,’:f ~ Xbo)

X6 =X _a = %(xﬁ—) XX

XY =l = %(Xf,’fxf,’f + X2 X0T)

Xe =X = %(Xf,’fxf,’sz + XT3 XTT) (a.7)
X9 = Xpe_ s = %(Xf,l +x1-1)

X10 = X‘};V:_ﬁ = Q(Xf:’, + X1 —_3)

1
w w P P
X11 "= Xp=—21 = ~(x22+ X2,-2)
o _ P
X12 = Xp=—10 = ~(x2.4 + X2.—4)

1
X13 = Xh=—4 = §(X HXis T X20)

1
W W _ L1 L2 P
X14 = Xp=—28 = §(X1,3 X153 + Xo.0)
1
W W _ L1 L2 L1 L2
X15 = Xp=—20 = §(X1,2 X153 FXT3X1s)

The characters belonging to different parts of the tensor product of the Virasoro-minimal
model have been distinguished here by an additional upper index in order to show explicitly
the change of basis that has been performed.

Using the explicit knowledge of the matrix of S in the basis of Y and x% it is now

a simple change of basis that has to be performed in order to obtain the matrix of S for

the W(2, 8)-model (the matrix for the change of basis is given by (a.7)). For W(2,8) at
712

¢ = —12 one has explicitly § = St =571,

According to the famous formula of E. Verlinde [35] one can now calculate the fusion
constants Ni’fj:

St SI Sm

k k
™ 0

For the special case discussed here the fusion constants are indeed integers in the range
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from 1 to 8. Not all of the fusion constants are independent. They obey the following
relations:

k _ k

Nij = Ny,
k _ 7

Nij=Njk (2.9)
E _ aro(k)

Ni; = No(i)o0)

The second equality is due to the trivial charge conjugation matrix in our case while the
last equality is given by the only non-trivial automorphism o of the fusion algebra:

o=(3 (9 10)(11 12) € 15 (a.10)

where (i j) denotes the transposition of i and j.

The automorphism o of the fusion algebra commutes with S, but not with T'. It does
commute with 7°. It can be used to construct a statistical model with a fault line whose
position can be shifted by gauge transformations.

Finally we list the fusion constants Ni’fj. We have not used all their symmetries. The
notation is [i] x [j] =), Ni’fj [k]; zeros are not listed.

[1] X [®;] = 1[®]

[4] x [®;], [10] x [®;], [12] x [®;] are given by the automorphism o

[2] X [2)=1[1]+1[2]+1[3] +1[4]+1[8]
2] % [3]=1[2]+1[3]+1[8]+1[9]+1[15]

[2] % [4]=1[2]+1[4] +1[8] +1[10]+1[15]

[2] % [5]=1[5]+1[6]+1[7]+1[11]+1[12]+1[13]

[2] x [6]=1[5]41[6]+1[11]+1[12]+1[15]

[2] % [7]=1[5]+1[11]+1[12]+1[13]+1[14]

[2] % [8]=1[2]-+1[3]+1[4]+1[8]+1[9] +1[10] +1[14] +1[15]

[2] X [9]=1[3]+1[8] +1[9]4+1[11]+1[13]+1[14]+1[15]

[2] X [10]=1[4]+1[8]+1[10]4+1[12]+1[13]+1[14]+1[15]

[2] % [11]=1[5]+1[6]+1[7]+1[9]+1[11]+1[12]+1[13]+1[14]+1[15]
[2] % [12]=1[5]+1[6]+1[7]+1[10]+1[11]+1[12]+1[13]+1[14]+1[15]
[2] X [13]=1[5]+1[7]+1[9]+1[10]+1[11]+1[12]+1[13]+1[14]+1[15]
[2] X [14]=1[7]+1[8]+1[9]+1[10]+1[11]+1[12]+1[13]+1[14]+1[15]
[2]x [15]=1[3] (6]

6]+1[8]41[9]-+1[10]-+1[11]-+1[12]+1[13]+1[14]+2[15]
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4]=1[3]41[4]+1[8]4+1[9]+1[10]+1[13]+1[14]+1[15]
5]=1[5]+1[6]+1[7]41[9]+2[11]+1[12]+1[13]+1[14]+1[15]

11]=1[3]42[5]+1[6]41[7]+1[8]4+1[9]+1[10]+2[11]+2[12]+2[13]+1[14]+2[15]
12]=1[5]41[6]+1[7]+1[8]+1[9]4+1[10]+2[11]+2[12]+2[13]+2[14] +2[15]

J=1[1] (3] [
J=1[3] (8] [
J=1[5] [7] [
J=1[3] (6] [
J=1[5] [7] [
J=1[2] 4] [
3] [9]=1[2]4-1[3]+1[4]+1[5]+1[6]41[7]+1[8]+1[9]+1[10]4+-1[11]4+1[12]4+1[13]+1[14] +-2[15]
J=1[4] (8] [
J=1[3] (6] [
J=1[5] [7] [
J=1[4] (6] [
14]=1[3]+1[4]+1[5]4+1[6]+1[7]+1[8]+1[9]+2[10]+1[11]+2[12]+2[13]+2[14]+2[15]
J=1[2] 4] [

J+1]

J+1]
13]=1[4]+1[5]+1[6]+1[7]+1[8]+1[9]+1[10]+2[11]+2[12]+2[13]+2[14] +2[15]

1+1]

J+1]

3] x [15]=1[2]+1[3]41[4]+1[5]+1[6]+1[7]+2[8]+2[9]+2[10]+2[11]4+2[12]+-2[13]4+-2[14]+-3[15]

6]=1[2]+1[3]4+1[4]+1[5]+1[6]+1[8]+1[9]+1[10]+1[11]+1[12]+1[13]+1[14]+2[15]
7)=1[2]4+1[3]+1[4]+1[5]-+1[8]+1[9]+1[10]+1[11]+1[12]+1[13]+2[14] +2[15]

8]+1[9]+2[10]+2[11]+2[12]+2[13]+2[14]4-2[15]

11)=1[2]+2[3]+1[4]+1[5]+1[6]+1[7]+2[8] +2[9] +2[10] +2[11]+2[12]+2[13] +-2[14] +3[15]
8]+2[9]+2[10]4-2[11]+2[12]+2[13]+2[14]+3[15]
13]=1[2]+1[3]+1[4]+1[5]+1[6]+1[7]+2

14]=1[3]+1[4]+1[5]41[6]+2[7]+2[8]+2

J=1[1] (3] [
J=1[2] 4] [
J=1[2] 4] [
]=2[5] [7] [
J=1[3] (6] [

5] [10]=1[4]+1[5]+1[6]+1[7]+1]
J=1[2] 4] [
J=1[2] (4] [
J=1[2] (4] [
]=1[3] [5] [ 9]+2[10]+2[11]+2[12]+3[13]+2[14]+3[15]
J=1[3] (5] [

1+2]
1]
J+1]
12]=1[2]+1[3]4+2[4]+1[5]4-1[6]+1[7]+2
1+1]
1+2]
1+2]

[

[
8]42[9]+2[10]+2[11]+2[12]+2[13]+3[14] +3[15]

[

[

15]=1[3]+1[4]+2[5]+2[6]+2[7]+2[8] +2[9] +2[10]+3[11]+3[12]+3[13]+3[14] +4[15]

4
7]+ 1[8]+1[0]+1[10]+1[11]+1[12]+1[13]+1[14]+2[15]
8]4+1[9]+1[10]4-2[11]+2[12]42[13]+1[14]+2[15]
7]4+1[8]42[9]+1[10]+2[11]+1[12]+2[13]+2[14]+2[15]
7]4+1[8]4+1[9]+2[10]+1[11]+2[12]+2[13]+2[14]+2[15]
5]4+1[6]+1[7]+2([8]+2[9] + 1[10]+2[11]+2[12]+-2[13]4-2[14] +3[15]
5]4+1[6]+1[7]+2([8]+1[0] +2[10] +2[11]+2[12]+-2[13]4-2[14] +3[15]
6
6]+1[7]+1[8]+2[9]+2[10]+2[11]+2[12]42[13]+3[14] +3[15]

5

]

]
+1[7]+2[8]+2[9]+2[10]+2[11] +2[12]+2[13] +2[14] +3[15]

]

]

+1[6]+2[7]42[8]+2[9]+2[10]+3[11]+3[12]+3[13]+3[14]+-3[15]
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4] 41[6]4+1[7]4+2[8]+1[9]+1[10]4+1[11]+1[12]+2[13]+1[14]+1[15]
7)41[8]4+1[9]4+1[10]+2[11]42[12]4+2[13]+1[14]42[15]

5]+1[6]41[7]+1[8]4+1[9]+1[10]+2[11]+2[12]+2[13

5]+1[6]41[7]+1[8]4+1[9]+1[10]+2[11]+2[12]+2[13

9]4-2[10]4+2[11]+2[12]+2[13]+2[14]+3

J+2] J+2[13]+2[14]
9]4-2[10]42[11]+2[12]+2[13]+2[14]
1+2] J+2[13]+2[14]
] J+2[13]+3[14]

w

4]4+1[5]4+1[6]+2[7]+2[8]+2 +2[11]+2[12]42[13]+2[14]+

4]42[5]+1[6]+1[7]+1[8]+2 13]+3[14]+3

J=1[1] 4] [71+2]

J=1[5] [7] [91+1]

J=1[3] (5] [71+1]

J=1[3] (5] [71+1]
11]=1[2]+1[3]+1[4]+1[5]+1[6]+1[7]+2[8] +2

J=1[2] 4] [6]+1]

J=1[2] (4] [6]+2]

J=1[2] (4] [6]+1] 9]+2[10]+2[11]+2[12

J=1[3] (5] [71+2]

[

[

[
4]41[5]+1[6]-+1[7]+2[8]+2

[

[

[

5]+2[6]41[7]+2[8]4+2[9]+2[10]+3[11]+3[12]+3[13]+3[14] +4[15]

3]+2[4]41[6]+1[7]42[8]+2[9]+2[10]+1[11]41[12]+2[13]4+-2[14]+-3[15]

4]41[5]+1[6]-+1[7]+2[8]+2[9]+2[10]+2[11]+2[12]+2[13] +2[14]+3[15]

4]+ 1[5]4+1[6]+1[7]4+2[8]+2[9]4+2[10]4+2[11]+2[12]+2[13]+2[14]+3[15]

[6]+1]
[6]+1]
[6]+1]
5]4-2[6]+2[7]+1[8]+2[9]+2[10]+3[11]+3[12]4-3[13]+3[14] +-3[15]
[71+1]
[71+2]
[6]+1]
[6]+2]

5]42[6]+2[7]+1[8]+2[9]+2[10]+3[11]+3[12]+3[13]+3[14] +3[15]

5]+2[6]42[7]+2[8]42[9]+2[10]+3[11]+3[12]+3[13]+3[14]+3[15]

4]42[5]+1[6]+1[7]4+2[8]+2[9]4+2[10]4+3[11]+3[12]+3[13]+3[14]+4[15]

4]+2[5]+2[6]+2[7]+3[8]+3[9]+3[10]+3[11]+3[12]+3[13]+4[14] +5[15]

=1[1]+1[2]+1[3]+2[4]+2[5]+2[6]+1[7]+2[8] +1[9]+2[10]+2[11]+3[12]+2[13]+2[14]+3[15]
=1[3]+1[4]+1[5]+1[6]+1[7]+2[8]+2[9]+2[10]+2[11]+2[12]+3[13]+-3[14] +-3[15]

=1[2]+1[3]4+1[4]+2[5]+2[6]+2[7]+2[8] +2[9]+2[10]+3[11]+3[12]+3[13]+3[14] +4[15]

] 2] (4] ]
] 4] (6] ]
] (3] (5] ]

x [12]=1[3]+1[4]+-2[5]+1[6]4-2[7]+2[8]+3[9] +2[10]+3[11] +-3[12]+3[13]+-3[14] +-4[15]
J=1[2]4-1[3]+1[4]+2[5]+2[6]+2[7]+2(8]4-2[9] +-3[10]+3[11]+3[12]4-3[13]+3[14] +-4[15]
|=1[2]41[3]+2[4]+2[5] +2[6]+2[7]+2[8] +2[9] +3[10]+3[11]+3[12]+3[13]+3[14] +4[15]
] (3] (5] ]

=1[2]+2[3]+2[4]+2[5]+2[6]+2[7]+3[8] +3[9] +3[10] +4[11]+4[12]+4[13] +4[14]+5[15]

[11]x [11]=1[1]+1[2]4-2[3]4+-2[4] +-2[5] +-2[6] +-2[7] +3[8] +3[9] +3[10] +-4[11] +-3[12] +-3[13] +4[14] +5[15]
[11] x [12]=1[2]42[3]+2[4] +2[5]+2[6]+2[7]+3[8]+3[9]+3[10]+3[11]+3[12] +4[13] +-4[14] +5[15]
[11] x [13]=1[2]42[3]+2[4] +2[5]+2[6]+2[7]+3[8]+3[9]+3[10]+3[11]+4[12]+4[13] +4[14] +5[15]
[11] x[14]=1[2]+1[3]+2[4]+2[5]+2[6]+2[7]+3[8] +3[9]+3[10] +4[11]+4[12]+4[13]+4[14]+5[15]
[11]x[15] (3] (5] ]43[8]+4[9]+4[10] 1+5[ [13]+5] ]

=1[2]+2[3]+2[4]+3[5]+3[6]+3[7]+3[8] +4[9] +4[10] +5[11]+5[12]+5[13]+5[14] +6[15

[13]x[13]=1[1]4+1[2]+2[3]+2[4]+2[5]+2[6]+2[7]+3[8]+3[9]+3[10]+4[11]+4[12]+4[13] +4[14] +-5[15]
[13] x [14]=1[2]4+2[3]+2[4] +3][5]42[6]+2[7]+3[8] +3[9]+3[10]+4[11]+4[12]+4[13]+4[14]+5[15]

[13] % [15]=1[2] +-2[3]+-2[4] +3[5] 4+-3[6] +-3[7]+3[8] +-4[0] +-4[10] +-5[11]+5[12] +-5[13] +-5[14] + 7[15]
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[14] % [14]=1[1]41[2]+2[3]+2[4]+2[5]+3[6]+3[7]+3[8]+3[9]+3[10]+4[11]+4[12]+4[13]+4[14]+5[15]

[14] X [15]=1[2]42[3]+2[4]+3[5]+3[6]+3[7]+4[8] +4[9]+4[10]+5[11]+5[12]+5[13]+5[14]+7[15]

[15] % [15]=1[1]4-2[2]+3[3]+3[4]+4[5] +3[6]+4[7]+5[8]+5[9]+5[10]+6[11]+6[12]+7[13]+7[14] +-8[15]

Appendix B: Proof of the Proposition

Proposition: For any algebra W(d(¢1), ..., d(¢r)) generated by k fields that corresponds
to a semirational theory the following inequality holds:

0<e<k (6.12)

orc=0and h =0.

The proof is based on the behaviour of the character at infinity. For a semirational theory
modular invariance implies that under the transformation S x}V (defined by (4.3) ) satisfies:

1
i (=) =D awnxgi (1) | T|< 00 (b.1)
h'el
Let ¢ := €*™7 and § := e~277 . We will now consider the limit 7 — 100, i.e. ¢ — 0 and

g — 1. Evaluation of (4.3) in the case of x}’ (—l) leads to the following equality:

T

1 s 0
W (-2) =dE Y e = (140(1) Y end" T oo (b.2)
n=0 n=0

with ¢, € Z4. ¢, is the number of linearly independent states in the W-algebra-Verma-
module on level n. Since the series (b.2) generally is divergent we will have to give an
estimate for ¢,,. Since all states in the module can be generated by applying modes of the
fields ¢; in lexicographic order to the highest weight vector an upper bound for ¢, is given
by:

1< on < (prps...+p)(n) (b3)
k

where p(n) is the number of partitions of n whose generating function is the Euler-n-
function. The “*’ denotes the discrete convolution. The lower bound follows from the
theory of representations of the Virasoro algebra and is true for almost all n except for
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h =0 and ¢ = 0. Of course we have counted many null states and in fact for many cases a
better estimate for ¢, can be given. Let P(q) := Y., p(n)g™. Now we can evaluate (b.2)
further:

XhW(_% (1+o0(1 nz_op*p* p)(n)q"
k
= 01 (P ) (b-4)
= (1+of (b\7|2q24P<>)
< o(1)) | 7|72 ¢ e

+

with b and b* certain constants and P(q)* absorbed in b*. The second step can easily be
1

= q_4

inferred from the behaviour of n(7) ~1(g) under modular transformations:

n(—) = V=im(r) (b.5)

Of course, one could also use the behaviour of P(q) itself under modular transformations
(see e.g. G. Andrews [36] ch. 5.2).

On the other hand we can insert the character in (b.1) and obtain:
1 /
Wty _ b=
X ( 7_) _(1+0(1))Zahhq o
h'el (b.6)

<

= (14 0(1)) an,,;nng ™"

Finally we obtain:

c

O(1) < (1+o(1))an,,.ng"™ "3 < (b* +0(1)) | 7|72 ¢~ 21 (b.7)

This can only be true if:
0<c—24hin <k (b.8)

which completes the proof.
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