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Optical conductivity of the Hubbard chain away from half filling
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Université de Cergy-Pontoise, 95302 Cergy-Pontoise Cedex, France
4Centre for Engineered Quantum Systems, School of Physical Sciences,
The University of Queensland, Brisbane, Queensland 4072, Australia

(Dated: January 4, 2016; published March 3, 2016)

We consider the optical conductivity σ1(ω) in the metallic phase of the one-dimensional Hubbard
model. Our results focus on the vicinity of half filling and the frequency regime around the optical
gap in the Mott insulating phase. By means of a density-matrix renormalization group implemen-
tation of the correction-vector approach, σ1(ω) is computed for a range of interaction strengths
and dopings. We identify an energy scale Eopt above which the optical conductivity shows a rapid
increase. We then use a mobile impurity model in combination with exact results to determine the
behavior of σ1(ω) for frequencies just above Eopt which is in agreement with our numerical data.
As a main result, we find that this onset behavior is not described by a power law.

I. INTRODUCTION

The Mott metal-insulator transition is a paradigm for
the importance of electron-electron interactions in cor-
related many-particle systems. It occurs in a range of
materials and has attracted much attention over the last
fifty years.1,2 While the mechanism that drives the transi-
tion is well understood, some of the dynamical properties
relating to Mott physics remain to be fully explored. A
characteristic feature of the Mott phase is the interaction-
induced formation of an excitation gap.2 This gap is visi-
ble in various dynamical correlation functions such as the
real part σ1(ω) of the optical conductivity

σ1(ω) = − Im χJ(ω)

ω
, (1)

χJ(ω) = − ie
2

L

∫ ∞
0

dt eiωt〈GS|[J(t), J(0)]|GS〉. (2)

Here J =
∑
j Jj is the current operator

Jj = −it
∑
σ

[
c†j,σcj+1,σ − c

†
j+1,σcj,σ

]
. (3)

The Mott gap disappears upon doping, and an interesting
question is what σ1(ω) looks like in the metallic phase
close to the Mott transition. Here we investigate this
issue in one spatial dimension for the archetypal example
of the Mott transition, the Hubbard model3

H = −t
∑
j,σ

[
c†j+1,σcj,σ + c†j,σcj+1,σ

]
+ U

∑
j

nj,↑nj,↓

− µ
∑
j

[
nj,↑ + nj,↓

]
. (4)

Here, cj,σ annihilates a fermion with spin σ = ↑, ↓ at site

j, nj,σ = c†j,σcj,σ is the number operator, t is the hopping

parameter which is set to t = 1 in our calculations, µ is
the chemical potential, and U ≥ 0 is the strength of the
on-site repulsion.

At zero temperature and half filling the optical conduc-
tivity has been comprehensively analyzed by both ana-
lytic and numerical methods:4–7 the system is insulating
and there is an optical gap8 at ω = 2∆, i.e., twice the
Mott-Hubbard gap, below which the optical conductivity
vanishes. Immediately above this gap, σ1(ω) exhibits a
square-root increase. In contrast, much less is known re-
garding the optical conductivity away from half filling. In
the thermodynamic limit, the optical conductivity con-
sists of a delta peak at zero frequency, the Drude peak,
and a so-called regular or incoherent part

σ1(ω ≥ 0) = D δ(ω) + σreg(ω). (5)

The low-frequency behavior has been studied using meth-
ods based on Luttinger liquid theory,9–11 which predict a
universal ω3 behavior of σreg(ω) at 0 < ω � t. Moreover,
in the case of one doped hole at strong coupling (U � 1),
an ω3/2 dependence at small frequency and spectral
weight in the region 0 < ω < 4t has been reported.12.
However, it is clear on general grounds that at low dop-
ings, i.e. 1 − n � 1, only a minute fraction of the total
spectral weight in σ1(ω) will be associated with features
at frequencies below the optical gap 2∆ at half filling.
One expects there to be a characteristic “pseudogap” en-
ergy scale Eopt above which σ1(ω) will increase and ex-
hibit a similar behavior to the one seen at half filling.
The low-intensity features below Eopt involve only exci-
tations comprising of holon-antiholon pairs. The scale
Eopt has been identified in a work by Carmelo et al.13

and is obtained from the Bethe ansatz solution of the
one-dimensional Hubbard model.3 In Fig. 1 we present
results for Eopt as a function of the band filling for sev-
eral values of U .
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FIG. 1. (Color online) Bethe ansatz results for theoretical
“pseudogap” onset value13,14 Eopt as a function of U and n.

In Ref. 13 it was conjectured that the optical conduc-
tivity increases in a power-law fashion above Eopt

σ1(ω) ∼ (ω − Eopt)
ζ

Θ(ω − Eopt) . (6)

In the following we investigate the behavior of the optical
conductivity for small dopings, paying particular atten-
tion to its behavior above the pseudogap. Our analysis
is based on a combination of density-matrix renormaliza-
tion group (DMRG) computations15 and results obtained
by employing a mobile impurity model description14,16–21

augmented by exact Bethe ansatz calculations.
The paper is organized as follows. We briefly review

the DMRG-based correction-vector approach in Sec. II
and present our numerical results in Sec. III. The fre-
quency dependence of σ1(ω) above Eopt is also deter-
mined by means of a mobile impurity model (MIM) in
combination with exact results in Sec. IV. Section V pro-
vides a comparison of our DMRG and MIM calculations,
which shows that the onset behavior directly above Eopt

is not described by a power law. Finally, our conclusions
are summarized in Sec. VI.

II. NUMERICAL METHOD

We use a matrix product state (MPS)22,23 imple-
mentation of the correction-vector approach,24 which is
an extension of the DMRG to compute spectral func-
tions. There exist several variants of this correction-
vector approach25–27 such as DDMRG.5 We can recast
Eq. (1) as

σ1(ω > 0) = − lim
η→0+

e2

ωL
Im GJ(ω > 0, η), (7)

where

GJ(ω, η) = 〈GS|J† 1

ω + iη − (H − EGS)
J |GS〉. (8)

Here EGS is the ground-state energy. The correction
vector is defined by

|ψJ(ω, η)〉 =
1

EGS + ω + iη −H
J |GS〉, (9)

and can be obtained as the solution |ψ〉 of the linear
system

(EGS + ω + iη −H)|ψ〉 = J |GS〉. (10)

Here the basic idea is to variationally determine the cor-
rection vector associated with GJ(ω, η) at the frequency
of interest within the ansatz class of MPS. We solve this
set of equations directly by local updates of the MPS |ψ〉
(see Ref. 28 for details). Sweeping through the chain in a
DMRG-like fashion until convergence is reached, a local
non-Hermitian system of equations is solved at each site
by the generalized minimal residual (GMRES) method.29

The dynamical correlation function can be evaluated as
the overlap GJ(ω, η) = 〈GS|J†|ψJ(ω, η)〉. Note that the
correction vector needs to be computed separately for
each frequency ω. Importantly, the method gives intrin-
sically broadened results with a Lorentzian line shape of
width η > 0, which is crucial for Eq. (10) to be well condi-
tioned. The correction-vector calculations are performed
for chains of up to L = 84 sites and open boundary
conditions (OBCs). Finite-size effects cause the spectral
weight of the Drude peak to be redistributed to finite
frequencies above the lowest energy scale ∼ 1/L.30 By
considering sufficiently large U , these effects are well sep-
arated from the onset at the edge of the “pseudogap”. To
obtain accurate results, we exploit the SU(2) symmetry23

of the Hamiltonian (4) and keep m = 1300 DMRG states
for ground-state calculations. For the dynamics, m = 500
states were retained for the correction-vector approach at
a filling of n = 1 and at n < 1, m = 600.

III. RESULTS FOR THE ABSORPTION BAND

A well-defined absorption band above Eopt is only
observed for sufficiently large values of the repulsion
U . Moreover, far from half filling, e.g. at quarter fill-
ing (n = 1/2), almost all of the intensity is contained
in the Drude peak.31 Therefore, the DMRG results for
σ1(ω) in Fig. 2 are obtained for U = 6 and 16 and a
filling factor not smaller than n = 2/3. Finite-size and
boundary condition effects are dominated by the intrinsic
broadening introduced due to η = 0.2. Only the n = 2/3
curve in the upper panel of Fig. 2 displays a slight in-
crease towards small frequencies. This increase is mainly
a consequence of the Drude peak appearing at finite fre-
quencies for OBCs30 and the growing Drude weight for a
fixed value of U with increasing doping. Moreover, it is
observed that for a given U the integrated spectral weight
below the regular part decreases with increasing doping.
This is in qualitative agreement with exact results for the
relative weight of Drude peak with respect to the total
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intensity for an infinite system.31 In the thermodynamic
limit, the Drude peak vanishes at half filling; this trans-
fer of spectral weight to finite frequencies as a function
of n is very sharp for small and extremely large U and
can be understood in terms of umklapp processes.31 The
two spectra at half filling (n = 1) shown in Fig. 2 are in
agreement with the U dependence of the Mott-Hubbard
gap ∆.3 With decreasing filling n, the frequency at which
σ1(ω) becomes sizable for a given U increases compared
to 2∆. The rapid increase of the DMRG results above
this frequency agrees well with existing results for Eopt,

13

which are marked by arrows in Fig. 2. The broadened
spectra also suggest that the onset at the lower thresh-
old becomes softer for decreasing filling and the upper
band edge does not vary significantly for different fill-
ings. This softening can be understood in terms of the
mobile impurity approach discussed below. The results
in Fig. 2 confirm the expectation that the optical spectra
become more symmetric for higher values of U .4,13 The
small peak in the middle of the absorption band is very

2 4 6 8 10 12
ω

0.00

0.05

0.10

0.15

0.20

0.25

0.30

σ
1(
ω

) U = 6

n = 1
n = 9/10
n = 5/6
n = 2/3

12 14 16 18 20 22
ω

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

σ
1(
ω

) U = 16

n = 1
n = 9/10
n = 5/6
n = 2/3

FIG. 2. (Color online) DMRG results for the regular part of
the optical conductivity show a well-defined absorption band
for various fillings n and a Lorentzian broadening of η = 0.2.
The data are obtained for a chain of L = 60 and OBCs.
(Upper panel) U = 6. (Lower panel) U = 16. The arrows
mark the results for Eopt determined by Bethe ansatz. Note
that the ω axis starts at different frequencies in both panels.
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FIG. 3. (Color online) DMRG results with an intrinsic
Lorentzian broadening of η = 0.2 are compared to the corre-
sponding deconvolved data. (Upper panel) U = 20, n = 7/8,
and L = 80. (Lower panel) U = 10, n = 5/6, and L = 84.

similar to the one previously observed at half filling,4

and has its origin in the large density of states for exci-
tations between parallel bands. Its existence is evident
for U = 16 and it can still be observed as a weak feature
for U = 6. For U = 16 the small peak is found to persist
at least down to n = 5/6.

In order to compare our DMRG results to the predic-
tion of the mobile impurity model (MIM) presented in
the next section, it is necessary to remove the intrinsic
Lorentzian broadening of the DMRG data. This a nu-
merically ill-conditioned problem, but in practice the fol-
lowing procedure was found to work reliably. The initial
correction-vector results are obtained on a grid of fre-
quencies separated by ∆ω = 0.1. We use rational func-
tions to both interpolate and extrapolate this data.32 The
resulting continuous function is then deconvolved using
the Richardson-Lucy algorithm.33,34 Comparisons of the
inherently broadened DMRG results and the deconvolved
data are presented in Fig. 3, where the onset behavior is
smooth, but small artifacts can be seen at higher frequen-
cies.
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IV. MOBILE IMPURITY MODEL (MIM)

While the low-energy sector of the Hubbard model is
described by a spin-charge separated Luttinger liquid
(LL), the calculation of finite-frequency properties re-
quires a careful treatment of perturbations. Perturbation
theory in some of these irrelevant operators exhibits in-
frared singularities, which lead to strong deviations from
LL behavior. Crucially, in the vicinity of thresholds for
simple excitations the problem can be mapped to that of
a high-energy mobile impurity coupled to a LL.16,17 The
parameters of this MIM can be completely determined
by using exact results obtained in the framework of the
Bethe ansatz solution.18 The appropriate model for the
optical conductivity at frequencies just above Eopt can be
cast in the form H =

∫
dx[HLL +Himp +Hint], where14,20

HLL =
∑
α=c,s

vα
16π

[
1

2Kα

(
∂xΦ∗α

)2
+ 2Kα

(
∂xΘ∗α

)2]
,

Himp = B†(x)

[
ε(0)− 1

2
ε′′(0)∂2

x

]
B(x) ,

Hint = B†(x)B(x)
[
fα∂xϕ

∗
α(x) + f̄α∂xϕ̄

∗
α(x)

]
. (11)

Here the Luttinger liquid part HLL describes the low-
energy spin and charge collective modes, whereas Himp

is the Hamiltonian of a high-energy “impurity” with
quadratically decreasing dispersion ε(p) around zero mo-
mentum. Finally Hint describes the interaction of the
impurity with the low-energy degrees of freedom. The
parameters vc,s, Kc,s, fc,s, f̄c,s, and ε(q) in (11) can be
determined from the Bethe ansatz solution.14 The phys-
ical content of the model (11) is as follows. Excitations
at frequencies just above Eopt consist of a single high-
energy bound state (k-Λ string3) and a number of low-
energy excitations.13 Assuming the bound state to be a
point-like object and retaining only the most relevant in-
teractions in Hint then leads to the model (11). The cur-
rent operator (3) can be projected on the MIM degrees
of freedom14

Jj →
(
∂xB

†(x)
)
e−iΘ

∗
c(x)/

√
2 sin

(
Φ∗s

2
√

2

)
+ . . . (12)

The calculation of the current-current correlation func-
tion, and thus the optical conductivity in the framework
of the MIM (11), then proceeds along standard lines16

and results in an expression of the form

σ1(ω ≈ Eopt) ∼
C

ω

∫ Λ

−Λ

dp
{ γ2

c

Kc

(
(1 + γ)

[
G̃cγ+2,γ

(
ω, p

)
+ G̃cγ,γ+2

(
ω, p

)]
− 2γG̃cγ+1,γ+1

(
ω, p

))
+

√
4γ

Kc
γcp

[
G̃cγ+1,γ

(
ω, p

)
− G̃cγ,γ+1

(
ω, p

)]
+ p2G̃cγ,γ

(
ω, p

)
+ γ2

s G̃
s
γ

(
ω, p

)}
, (13)

where

G̃cγ,δ(ω, p) =
(2π)2Θ(ωc(|p|))(ωc(−p))γ−1(ωc(p))

δ−1

Γ(γ)Γ(δ)(2vc)γ+δ−1
,

(14)

G̃sγ(ω, p) =
(2π)2(ωs(p))

2γ−1

Γ2 (γ) (v2
c − v2

s)γ
Θ(ωs(p))

∫ 1

0

dssγ−1

× (1− s)γ−1

[
2vc(ω − vsp)
v2
c − v2

s

s− ωc(p)

vc − vs

]
× Θ

(2vcωs(p)

v2
c − v2

s

s− ωc(p)

vc − vs

)
+ p→ −p. (15)

Here we have defined ωα(p) = ω− ε(p)− vαp, and Λ is a
cutoff. The parameter γ is shown in Fig. 4 as a function
of band filling for several values of U . The result (13)
applies in an a priori unknown frequency window above
Eopt. This energy window shrinks to zero as we approach
half filling n→ 1, and the behavior of (13) is in fact very
different from the square-root increase seen at half filling.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

γ

n

U = 1.5
U = 4
U = 10
U = 20

FIG. 4. (Color online) Parameter γ as a function of U and n.

V. BEHAVIOR OF σ1(ω) ABOVE THE
CROSSOVER SCALE Eopt

Focusing on frequencies in the vicinity of Eopt in Fig. 3,
we observe that the deconvolved DMRG data exhibits a
smooth and slow increase. This behavior can be directly
compared to the results obtained from the MIM. In the
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FIG. 5. (Color online) Comparison of theoretical predictions
from a mobile impurity model with numerical results from
DMRG.

latter we adjust the overall amplitude C allowing for a
small, constant contribution attributed to excitations in-
volving only holons and antiholons which give rise to
the Drude peak at zero frequency, but are expected to
make up only a small fraction of the spectral weight at
ω ≈ Eopt. We furthermore adapt the cut-off Λ, although
the results depend only weakly on it. The comparison
in Fig. 5 shows that the MIM results are consistent with
the deconvolved DMRG data. Moreover, the increase in
σ1(ω) above Eopt is not described by a power law. On
a technical level this can be traced back to the fact that
the mobile impurity sits at a maximum of its dispersion
relation. The results obtained by means of the MIM are
very different from the power-law increase (6) predicted

in Ref. 13. In particular the exponent ζ predicted in this
previous work becomes less than one for U > 4, which is
not consistent with our deconvolved DMRG data.

VI. CONCLUSIONS

We have studied the real part σ1(ω) of the zero-
temperature optical conductivity in the one-dimensional
Hubbard model in the metallic phase close to half fill-
ing. At half filling n = 1, it is known that σ1(ω) vanishes
below twice the Mott gap, and then increases in a charac-
teristic square-root fashion.4 Doping away from half fill-
ing induces a Drude peak at zero frequency, the weight
of which scales with 1− n. Here we have focused on fre-
quency scales close to the optical gap at half filling, and
investigated how σ1(ω) gets modified upon doping holes
into the system. In our DMRG calculations, we have
observed a rapid increase above a crossover scale Eopt,
and analyzed this behavior in the framework of a mobile
impurity model. The results obtained by this method
were found to be in agreement with our DMRG data.
Therefore, the increase of σ1(ω) for frequencies above
the pseudogap Eopt, in which only small-amplitude exci-
tations consisting of holon-antiholon pairs are present, is
not described by a power law.
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after the submission of this article. We would like to
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