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We study the repulsive Hubbard model both analytically and numerically on a family of highly
frustrated lattices which have one-electron states localized on isolated trapping cells. We construct
and count exact many-electron ground states for a wide range of electron densities and obtain
closed-form expressions for the low-temperature thermodynamic quantities which are universal for
all lattices of the family. Furthermore, we find that saturated ferromagnetism is obtained only for
sufficiently high electron densities and large Hubbard repulsion U while there is no finite average
moment in the ground states at lower densities.
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I. INTRODUCTION

Exactly solvable interacting quantum lattice sys-
tems are of great importance in condensed matter
physics. Although most of the examples are known
for one-dimensional systems, two-dimensional and three-
dimensional models are also coming into sight. A cru-
cial point in searching for exactly solvable lattice models
concerns the lattice geometry. Furthermore the inter-
play between lattice geometry, interactions and quantum
fluctuations often gives rise to exotic quantum phases.
Famous examples where a special arrangement of in-
teraction bonds allows to find exact quantum many-
body ground states are the Majumdar-Ghosh model,1 the
Shastry-Sutherland model,2 and the Kitaev model.3

Besides revealing new magnetic properties of previ-
ously known materials (e.g. the diamond-chain com-
pound azurite4) there are presently various possibilities
to design interacting lattice systems with controlled ge-
ometry. Modern strategies in chemistry open a route to
synthesize new materials with a desired lattice structure
and intersite interactions.5,6 Moreover, recent progress
in nanotechnology allows the fabrication of quantum dot
superlattices and quantum wire systems with any type of
lattice.7 Another rapidly developing field is the controlled
setup of optical lattices for cold atoms.8,9

Motivated by these achievements we propose here a
class of lattices (including the well-known diamond chain,
frustrated ladder, square-kagome and checkerboard lat-
tices) for which various properties of the Hubbard model
can be examined rigorously. In particular, we character-
ize the complete manifold of highly degenerate ground
states for electron numbers n = 1, . . . ,N ∝ N and calcu-
late low-temperature thermodynamic quantities around
a particular value of the chemical potential µ0. The gen-
eral lattice construction rules illustrated below are based
on a local point of view similar (but not identical) to ear-
lier considerations for electronic10,11 and spin systems.12

Below we also discuss some properties of the Hubbard
model for a few one-dimensional and two-dimensional
representatives. We illustrate the dominating role of the

exact ground states for the low-temperature physics of
the Hubbard model at certain electron densities. Fur-
thermore we analyze the ground state with respect to
magnetic properties. We confirm our analytical findings
by numerical data for finite systems.

II. LATTICES WITH TRAPPING CELLS

We consider the N -site Hubbard Hamiltonian

H =
∑

σ=↑,↓

H0σ + HU , HU = U
∑

i

ni,↑ni,↓,

H0σ =
∑

〈i,j〉

ti,j

(

c†i,σcj,σ + c†j,σci,σ

)

+ µ
∑

i

ni,σ, (1)

where i denotes the lattice sites, 〈i, j〉 denote the bonds

connecting neighboring sites, the c†i,σ (ci,σ) are the usual

fermion operators, ni,σ = c†i,σci,σ, ti,j > 0 are the hop-
ping integrals, U ≥ 0 is the on-site Coulomb repulsion,
and µ is the chemical potential.

We consider the Hubbard model (1) on a family of
lattices defined by the following construction rules: (i)
Take a ‘trapping cell’, i.e., a finite region where an elec-
tron in the infinite lattice will be localized. For sim-
plicity, we consider here bipartite cells with equivalent
sites and bonds, such as a single bond between two sites,
equilateral even polygons, or a cube.13 (ii) Solve the
one-electron problem for the trapping cell, finding the

lowest-energy eigenfunction ∝
∑

i aic
†
i,σ|0〉 with |0〉 de-

noting the vacuum state. For traps consisting of a single
bond or a square the ground state is nondegenerate and
a1 = −a2 = 1 or a1 = −a2 = a3 = −a4 = 1, respectively.
(iii) Arrange the trapping cells into a regular pattern so
that trapping cells do not touch each other (do not have
common sites) and complete the lattice by connecting the
cells via surrounding (connecting) bonds. Most impor-
tantly, the connecting bond scheme should prevent the
escape of the localized electron from the trap, i.e., the
constructed one-electron (localized) state should remain
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FIG. 1: (Color online) Diamond chain (a), frustrated ladder
(b), square-kagome (c), and checkerboard (d) lattices. The
circles indicate the lattice sites, the thick (thin) lines indicate
the hopping paths along the trap (connecting) bonds. For
the ideal diamond chain with t1 = t3 we will use the notation
t = t1 = t3, t′ = t2.

an eigenstate of the Hamiltonian on the infinite lattice.
It is easy to show that a sufficient condition for this is
∑

i tr,iai = 0, where the sum runs over all sites i of a
trapping cell and r is an arbitrary site which does not
belong to the trap, see also Ref. 12. For such traps as
a single bond, square or cube this condition is fulfilled if
an arbitrary bond of the trapping cell and the surround-
ing bonds attached to the two sites of this bond form an
isosceles triangle. (iv) Choose the hopping integrals t′ of
the trapping cells sufficiently large, t′ > t′c, so that the
localized states become the lowest-energy ones in com-
parison with other (extended) one-electron states.

Following the rules formulated above we are able
to construct many different one-dimensional, two-
dimensional, and even three-dimensional lattices. Note
that a lattice constructed in this manner has a flat one-
electron band which for t′ > t′c becomes the lowest-energy
one. However, we emphasize that such lattices do not be-
long to Tasaki’s models for flat-band ferromagnetism.10

In what follows we focus for concreteness on some typ-
ical representatives which were investigated in the con-
text of strongly correlated systems earlier, namely, the
diamond chain,15 the frustrated ladder,16,17 the square-
kagome, and checkerboard lattices12,18 (see Fig. 1). It
is also convenient to denote sites by m, p, where m =
1, . . . ,N denotes unit cells (N = N/3, N/2, N/6, N/4
for the diamond chain, frustrated ladder, square-kagome,
and checkerboard lattice, respectively) and p denotes
sites inside the unit cell (see Fig. 1). Note that for the lat-
tices considered here the number of unit cells is identical

to the number of trapping cells. However, the trapping
cell may or may not be identical to the unit cell.

III. LOCALIZED-ELECTRON STATES FOR

U = 0 AND U > 0

Next we turn to the characterization of the complete
manifold of highly degenerate ground states for electron
numbers n = 1, . . . ,N ∝ N . We start with the case
U = 0 considering the diamond chain with t = t1 = t3,
t′ = t2 for concreteness. Three one-electron bands,

ε1 − µ = −t′ ,

ε2,3(κ) − µ =
t′

2
∓

√

(

t′

2

)2

+ 4t2(1 + cosκ) , (2)

are arranged as follows for t′ > t′c = 2t: ε1 < ε2(κ) <
ε3(κ). Note that the lowest one-electron band ε1 is
completely flat, i.e., κ-independent. The correspond-
ing states can be localized in real space. We introduce

the operators l†m,σ = c†m,2,σ − c†m,3,σ [indices 2 and 3
denote the bottom and top sites on the vertical bond
(see Fig. 1), m enumerates the unit cells] which satisfy
[H0σ, l†m,σ]− = ε1 l†m,σ. Then all 2N one-electron states

belonging to the flat band can be written as l†m,σ|0〉.

Application of n distinct operators l†m,σ to |0〉 yields n-
electron states with energy En = nε1, n = 1, . . . ,N .
Note that all trapping cells are disconnected and the de-
generacy of these n-electron states is

g
(0)
N (n) =

(

2N

n

)

. (3)

These arguments can be applied to other models: for the
energy of the flat band ε1 −µ we find −t′, −2t′, −2t′ for
the frustrated ladder, square-kagome, and checkerboard
lattice, respectively. We assume t′/t > t′c/t = 2, 1, 1 for
the frustrated ladder, square-kagome, and checkerboard
lattice, respectively. For the square-kagome and checker-
board lattice an electron may be localized on smallest-

area squares and l†m,σ = c†m,1,σ − c†m,2,σ + c†m,3,σ − c†m,4,σ,
where the indices 1, . . . , 4 denote the vertices of the
square.

We now address the case U > 0. Since HU is a positive
semidefinite operator for U > 0, it can only increase ener-
gies. The states for which each trapping cell contains up
to one electron are exact eigenstates of the full Hamil-
tonian (1) with the U -independent energy En = nε1

and thus they remain the ground states in the subspaces
n = 2, . . . ,N in the presence of a Hubbard repulsion
U > 0. It is straightforward to count these localized
n-electron ground states and we find

gN (n) = 2n

(

N

n

)

< g
(0)
N (n) . (4)

The localized n-electron states are linearly indepen-
dent which can be proven using the arguments of Ref. 19



3

(orthogonal class in the nomenclature of that reference).
These states are the only ground states in each subspace
n = 1, . . . ,N . This can be seen by recalling from spin
systems that a finite separation of the flat one-particle
band from the next (dispersive) band ensures complete-
ness of the localized states.18 For the present models, we
can even control the energy gap by varying t′/t, in con-
trast to the sawtooth Hubbard chain.14 The state with N
electrons possesses perfect charge ordering (each trapping
cell is occupied by precisely one electron) and therefore it
can be understood as a particular realization of a Wigner
crystal.9 However, with respect to the spin orientations
it has a huge degeneracy 2N (compare the degeneracy of
the ground state, N + 1, at quarter filling when n = N
for the sawtooth chain10,14).

IV. THERMODYNAMICS

The localized-electron ground states in the sectors
with n ≤ N have important implications for the low-
temperature properties of the Hubbard model (1) around
a chemical potential µ0 = µ − ε1: Due to their huge
degeneracy they dominate the grand-canonical partition
function at low temperatures. Knowing the degeneracy
(4) of the ground states gN (n) and their energy En = nε1

we can write the grand-canonical partition function as

Ξ(T, µ, N) =

N
∑

n=0

gN (n) e−nε1/T =
(

1 + 2 e−ε1/T
)N

.

(5)
Note that only the combination x = −ε1/T = (µ0−µ)/T
enters the localized-electron contribution to any ther-
modynamic quantity. The thermodynamic potential be-
comes Ω(T, µ, N)/N = −T ln(1 + 2 expx) (the rhs. is
valid for both finite N and N → ∞) leading to simple
expressions for thermodynamic quantities such as

n̄(T, µ, N)

N
=

2 ex

1 + 2 ex
(6)

for the average electron density n̄(T, µ, N) =
∂Ω(T, µ, N)/∂µ,

S(T, µ, N)

N
= ln(1 + 2 ex) −

2 x ex

1 + 2 ex
(7)

for the entropy S(T, µ, N) = −∂Ω(T, µ, N)/∂T , or the
specific heat in the grand-canonical ensemble

C(T, µ, N)

N
=

T∂S(T, µ, N)

N∂T

=
2 x2 ex

1 + 2 ex
−

(

2 x ex

1 + 2 ex

)2

. (8)

The specific heat at constant n vanishes identically,
C(T, n, N) = 0, as can be verified explicitly using the
results (6), (7), and (8) for n̄(T, µ, N), S(T, µ, N), and

C(T, µ, N). Eqs. (5) – (8) given above represent the con-
tribution of the localized-electron states to the respective
thermodynamic quantities. In section V we will demon-
strate that these analytic expressions are an excellent de-
scription of the thermodynamics of the full model at low
temperatures.

The average ground-state electron number n̄(0, µ0, N)
exhibits a jump from N to zero as µ exceeds µ0. More-
over, at µ = µ0 we have x = 0 resulting in a finite resid-
ual entropy S(0, µ0, N)/N = ln 3 ≈ 1.0986. We note
that thermodynamic quantities for all considered models
are identical up to a factor N/N and the concrete value
of µ0, i.e., the low-temperature behavior is universal for
the whole family of lattices constructed by the rules for-
mulated in section II.

V. NUMERICAL RESULTS

Let us now present numerical results obtained by ex-
act diagonalization for finite lattices. We set t = 1 for
convenience. These calculations have been performed,
on the one hand, to estimate the range of validity of the
derived expressions for the low-temperature thermody-
namics and, on the other hand, to study the states with
n > N in more detail. The numerical effort to diagonalize
the Hubbard model (1) grows rapidly with N . It is there-
fore convenient to consider also the limit U → ∞ where
doubly occupied sites can be eliminated from the Hilbert
space. Computations were performed using different pro-
grams including J. Schulenburg’s spinpack20 and a cus-
tom implementation of the Householder algorithm.21

Note first that the degeneracies of the localized ground
states calculated for various lattices and parameter sets
perfectly fit to the prediction gN (n) of section III. The
average electron density n̄/N versus µ/µ0 shown in Fig. 2
exhibits a jump between 0 and 1 at µ/µ0 = 1 and a
plateau at n̄/N = 1 with the width ∆µ/µ. The charge
gap ∆µ = E(N +1)−2E(N )+E(N −1) determines the
region in which the localized states exclusively control
the ground-state behavior of the model (1). The inset
in Fig. 2 shows that ∆µ is almost size-independent. The
charge gap increases almost linearly with U for small U ,
showing that this is a correlation effect. For the diamond
chain with t′ = 3 t, the charge gap saturates at ∆µ ≈
0.43 t for U & 3 t.

A. Thermodynamics for ideal geometry

Next we compare the specific heat C(T, µ, N) in the
grand-canonical ensemble for the diamond chain, the
frustrated ladder, the square-kagome lattice, and the
checkerboard lattice at µ = 0.95 µ0, µ0, and 1.05 µ0

in the limit U → ∞ (Fig. 3). C(T, µ, N)/N versus
T/µ0 exhibits a universal additional low-temperature
maximum for the chemical potential around µ0. This
low-temperature maximum emerges due to the manifold
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FIG. 2: (Color online) Electron density n̄/N versus chemical
potential µ/µ0 for the diamond chain (N = 18, t′ = 3), the
frustrated ladder (N = 16, t′ = 3), the square-kagome lattice
(N = 24, t′ = 2), and the checkerboard lattice (N = 16,
t′ = 2) for U → ∞ and T = 0. The universal dependence (6)
at T = 0 is given by θ(1−µ/µ0). Inset: Charge gap ∆µ/µ0 at
n̄/N = 1 versus U for the diamond chain [N = 12 (triangles),
N = 18 (line), t′ = 3].

of localized-electron states, whose energies are slightly
split for µ = 0.95 µ0 and 1.05 µ0 but still well sepa-
rated from energies of other higher energy states. In-
deed, the low-temperature maximum is excellently de-
scribed by the localized-electron formula (8) (lines in
Fig. 3). Recall that the result (8) is valid for any N .
Accordingly, there are no finite-size effects for the low-
temperature maximum of the specific heat. In Fig. 3,
one observes another maximum of C(T, µ, N) at higher
temperatures. This maximum collects all states which
are not localized-electron states and thus depends on de-
tails of the model. If µ → µ0 the low-temperature maxi-
mum shifts to lower T and is even much better separated
from the high-temperature maximum. At µ = µ0, we
have x = 0. Consequently, the contribution (8) of the
localized-electron states to the specific heat C vanishes
identically. Therefore, the temperature where the numer-
ical data for C(T, µ0, N) begin to deviate from zero (see
the middle panel of Fig. 3) represents a characteristic
temperature below which the localized states exclusively
control the thermodynamic behavior of the model (1).

Fig. 4 illustrates the influence of different values of
U , using the example of the frustrated ladder with
N = 12 and t′ = 3. The low-temperature maximum
in C(T, µ0, N) is independent of U , as expected. By con-
trast, the high-temperature maximum does depend on
U and it extends to lower temperatures for smaller val-
ues of U . Nevertheless, the localized-electron states are
still well separated from the other states for the values of
U ≥ 4 and µ = 0.95 µ0, 1.05 µ0 shown in Fig. 4.

Fig. 5 shows the entropy S for the same lattices and
parameters as in Fig. 3. Since C(T, µ, N) is a temper-
ature derivative of S(T, µ, N), the features in the latter
quantity correspond to those in the former. In partic-
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FIG. 3: (Color online) C(T, µ, N)/N versus temperature
T/µ0 in the limit U → ∞ for the diamond chain (triangles),
the frustrated ladder (squares), the square-kagome lattice (di-
amonds), and the checkerboard lattice (circles). We also show
the universal dependence (8) (lines).
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with N = 12 and t′ = 3 for different values of U . We also
show the universal dependence (8) (lines).
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FIG. 5: (Color online) Entropy S(T, µ, N)/N versus temper-
ature T/µ0 in the limit U → ∞ for the diamond chain (tri-
angles), the frustrated ladder (squares), the square-kagome
lattice (diamonds), and the checkerboard lattice (circles). We
also show the universal dependence (7) (lines).

ular a steep slope in S(T, µ, N) corresponds to a max-
imum of C(T, µ, N). However, there is one additional
piece of information in S(T, µ, N), namely its value in
the low-temperature limit: for µ = µ0, S(T, µ, N)/N
tends to ln 3 ≈ 1.0986 for T → 0 (see section IV). If the
chemical potential µ is in the charge-gap region, i.e., for
µ0 − ∆µ < µ < µ0, the entropy per unit cell stays also
finite for T → 0 (compare the upper panel of Fig. 5). For
these values of µ the ground state is the charge-ordered
state (Wigner crystal) with n = N electrons and accord-
ingly exhibits a ground-state degeneracy of gN (N ) = 2N

due to the independence of the spin orientations of the
N electrons, see Eq. (4). Indeed, Eq. (7) shows that the
entropy per cell S/N → ln 2 ≈ 0.6931 when x → ∞, i.e.,
T → 0 and µ < µ0.

B. Deviations from ideal geometry

In real compounds the conditions under which the lo-
calized states exist may be not strictly fulfilled. It is
therefore important to study deviations from ‘ideal ge-
ometry’. Such deviations or distortions in general lift the
ground-state degeneracy. Nevertheless, one may expect
that localized-state effects survive in a certain tempera-
ture range if the distortion is sufficiently small such that
the originally degenerate energy levels remain close to
each other. We investigate this issue in more detail using
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FIG. 6: (Color online) C(T, µ, N)/N for the ideal diamond
chain (t′ = 4, t = 1) and the distorted diamond chain (t1 =
1.1, t2 = 4, t3 = 0.9). The system size is N = 12 in all cases.

the example of the distorted diamond chain (N = 12,
t′ = 4) where we distinguish the hopping terms running
from north-west to south-east t1 > t (t1 = 1.1) and those
running from south-west to north-east t3 < t (t3 = 0.9),
see Fig. 1. This generalization is inspired by the set of ex-
change interactions proposed for azurite in Ref. 4. Fig. 6
shows numerical results for N = 12, U = ∞ and 10 in
comparison to the data for the undistorted case which
are identical to those shown in Fig. 3. The effect of the
distortion is evidently very small for T & 0.04. In par-
ticular, the additional low-temperature maximum in the
grand-canonical specific heat C(T, µ, N)/N for µ = 3.8
and 4.2 (corresponding to µ = 0.95 µ0 and 1.05 µ0 in the
undistorted case) is essentially unaffected. This implies
that an important fingerprint of the highly degenerate
localized states survives a small distortion. Additional
features emerge in Fig. 6 for the distorted diamond chain
in the region T . 0.01 at µ = 3.8 and for T . 0.1
at µ = 4. It is evident from Fig. 6 that these features
depend on the value of U . Comparison with smaller sys-
tem sizes for U = 10 (not shown) exhibits also finite-
size effects for T . 0.001 at µ = 3.8 and for T . 0.01
at µ = 4. One may therefore speculate that the addi-
tional low-temperature maximum observed in C(T, µ, N)
for µ = 4 around T ≈ 0.006 in Fig. 6 survives the ther-
modynamic limit, but it is difficult to infer the behavior
in the thermodynamic limit at even lower temperatures.

The specific heat C(T, n, N) in the canonical ensem-
ble, i.e., for a fixed number of electrons n, may be par-
ticularly relevant from the experimental point of view.
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FIG. 7: (Color online) Specific heat C(T, n, N)/N for the
ideal diamond chain (t′ = 4, t = 1) and the distorted diamond
chain (t1 = 1.1, t2 = 4, t3 = 0.9) with n = N/3 electrons for
N = 9, 12, 15, 18. The Hubbard repulsion is U = 10.

In section IV we have already used the results for the
grand-canonical ensemble to point out that the contribu-
tion of the localized-electron states to C(T, n, N) always
vanishes identically in the ideal situation. This is also ev-
ident if one considers a fixed number of electrons: in this
case all localized n-electron states have the same energy
E and using the representation C =

(

〈E2〉 − 〈E〉2
)

/T 2

in terms of the fluctuations of E one finds C(T, n, N) = 0.

We use again the example of the (distorted) diamond
chain to take a closer look at the behavior of C(T, n, N).
The case of the Wigner crystal, i.e., n = N may be
particularly interesting. Fig. 7 shows numerical results
for the specific heat C(T, n, N)/N of both the ideal and
the distorted diamond chain with n = N = N/3 elec-
trons. First, we observe that C(T, n, N) of the ideal
diamond chain (solid lines in Fig. 7) is indeed indistin-
guishable from zero for T . 0.1 and accordingly there
is no low-temperature maximum. By contrast, for the
distorted diamond chain the exact degeneracy of the
ground-state manifold is removed, leading to the recov-
ery of a low-temperature maximum. For the parame-
ters used in Fig. 7, this low-temperature maximum ap-
pears at T ≈ 10−4 (see dashed lines in Fig. 7), reflecting
the fact that the detuning t3 = 0.9 6= t1 = 1.1 leads
only to a very small splitting of the originally 2n-fold de-
generate ground-state manifold. There is another high-
temperature maximum at temperatures of order one in
Fig. 7 where the results for the distorted diamond chain
are indistinguishable from those for the ideal situation.
The double-peak structure found in the canonical specific
heat C(T, n, N) of the distorted situation is qualitatively
remarkably similar to the double-peak structure in the
grand-canonical specific heat C(T, µ, N) observed e.g. for

µ = 3.8 in Fig. 6.
While finite-size effects are mostly unimportant in the

grand-canonical ensemble, they are clearly relevant in
the low-temperature region of Fig. 7 and visible even
in the region of the high-temperature maximum. Such
enhanced finite-size effects are typical for computations
performed in the canonical ensemble where one considers
only a fixed number of electrons n.

VI. MAGNETIC PROPERTIES

We return now to the ideal geometry and discuss
ground-state magnetism. Since the trapping cells are in-
dependent of each other (i.e., they do not have common
sites), the cells can be occupied independently by elec-
trons with spin up or spin down for n = 1, . . . ,N . As a
result, for n ≤ N the majority of the degenerate ground
states of the Hamiltonian (1) on the considered lattices
is nonmagnetic. Indeed, using the localized-electron pic-
ture of section III, it is straightforward to show for the
total spin operator S = (Sx, Sy, Sz) that

〈S2〉n
N2

=
3〈(Sz)2〉n

N2
=

3n

4 N2

N→∞
−→ 0 (9)

for n ≤ N , where the limit N → ∞ is taken for a fixed
electron density n/N . Here 〈. . .〉n denotes the average
over all ground states in the sector with n electrons.

The situation changes fundamentally at n = N + 1. If
U is small (with respect to the energy gap between the
flat band and the next band; this gap can be controlled
by the ratio t′/t) an extra electron may lead to formation
of a complicated many-body state with an energy that in-
creases with growing U . However, if U is large enough,
U > Uc(N + 1), it might be energetically favorable to
avoid double occupancy by putting one extra electron
in the lowest-energy state of the next (dispersive) one-
electron band in addition to the N localized electrons.
The magnitude of Uc depends on the system under con-
sideration. It is possible to find an explicit expression for
such an eigenstate:

|ϕN+1〉 ∝ β†
κ0,↑l

†
N ,↑ . . . l†1,↑|0〉 . (10)

Here β†
κ0,σ creates an electron in the lowest dispersive

band with momentum κ0 and spin σ. The state |ϕN+1〉
is fully polarized, i.e.,

〈ϕN+1|S
2|ϕN+1〉 =

N + 1

2

(

N + 1

2
+ 1

)

, (11)

and it has a U -independent energy N ε1 + ε2(κ0). Other
states belonging to a spin-N+1

2 SU(2)-multiplet can

be obtained by applying S− =
∑

i c†i,↓ci,↑ to this state

(Kramers degeneracy). This multiplet can also be ob-

tained by applying S+ =
∑

i c†i,↑ci,↓ to the spin down

counterpart of Eq. (10).
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TABLE I: Number of electrons n > 1 for which there is
a unique saturated ferromagnetic ground-state multiplet in
the limit U → ∞ on the specified lattice subject to peri-
odic boundary conditions. Note that saturated ground-state
ferromagnetism for the considered lattices of N sites occurs
only for a sufficiently large number of electrons N < n < N
(apart from the trivial case n = 1). Note that for the
square-kagome lattice with N = 24 sites the ground states
for n = 16, 17, 18, 19 have not been calculated, because of the
large size of the Hamiltonian matrix.

lattice number of electrons

diamond, N = 12 (N = 4) n = 5, 7, 8, 9, 11
diamond, N = 18 (N = 6) n = 7, 9, 11, 12, 13, 15, 17
ladder, N = 12 (N = 6) n = 7, 9, 11
ladder, N = 16 (N = 8) n = 9, 11, 13, 15

square-kagome, N = 18 (N = 3) n = 4, 5, 7, 8, 15, 17
square-kagome, N = 24 (N = 4) n = 7, 8, 9, . . . , 20, 21, 23
checkerboard, N = 16 (N = 4) n = 7, 8, 9, 15

Numerically, we find such ferromagnetic ground states
for large U also for bigger N < n < N . For finite sys-
tems the numbers of electrons n for which ferromagnetic
ground states appear depend on the lattice size and the
boundary conditions.22,23 For all lattices considered in
this paper and the imposed periodic boundary conditions
we find fully polarized ground states for particular val-
ues of the electron number n > N for sufficiently large
U > Uc. In Table I we list some combinations of finite
lattices and numbers of electrons n for which the ground
state is fully polarized for U → ∞. Note that the state
(10) is incompatible with the boundary conditions of the
N = 24 square-kagome and the N = 16 checkerboard
lattice such that there is no saturated ground-state fer-
romagnetism for n = 5 on these two lattices. In addition,
we give as an example the strength of correlation U > Uc

that is needed to realize ground-state ferromagnetism for
n = N + 1 for the frustrated ladder with N = 16 sites:
we found Uc ≈ 0.42 and 12.78 for t′ = 2.1 and 4, respec-
tively.

This kind of ferromagnetism that occurs only for suf-
ficiently strong on-site repulsion (note that it is not
flat-band ferromagnetism that occurs for any U >
0) was discussed also earlier for some one-dimensional
systems.17,22,23 Moreover we mention that the satu-
rated ferromagnetism found for the largest electron num-
ber n = N − 1 corresponds to Nagaoka’s well-known
result.10,24 However, we emphasize that the occurrence of
ferromagnetism for other electron numbers in the range
N < n < N is a generic feature of the considered lat-
tices and is therefore not restricted to one-dimensional
systems.

VII. CONCLUSIONS

In summary, we have given an exact solution for the
ground-state properties of a correlated many-electron
system on a class of lattices in a certain range of
the chemical potential µ. We have studied the low-
temperature thermodynamics which for µ around µ0 is
controlled just by the manifold of localized ground states.
In particular, we have presented explicit expressions for
the low-temperature behavior of the grand-canonical par-
tition function and related quantities such as the grand-
canonical specific heat C(T, µ, N). The localized-electron
features have no finite-size effects and are universal, i.e.,
they are the same for the whole class of lattices.

Apart from the high-temperature maximum that is
typical for systems with a bounded energy spectrum
we find an additional low-temperature maximum in
C(T, µ, N) if the chemical potential µ deviates slightly
from µ0. This extra maximum survives under small de-
viations from ideal lattice geometry. Moreover, for the
canonical specific heat C(T, n, N) the lifting of degener-
acy caused by deviations from ideal lattice geometry ac-
tually gives rise to an additional low-temperature max-
imum in the specific heat. Thus, any splitting of the
highly degenerate localized electron states, be it by a
deviation of the chemical potential from µ0 or by a devi-
ation from ideal lattice geometry, leads to an extra low-
temperature maximum in the specific heat as a charac-
teristic fingerprint of the localized-electron states.

Furthermore, we argued that in contrast to the flat-
band ferromagnets10 there is no ground-state ferromag-
netism in the present class of models if the electron den-
sity satisfies n/N ≤ 1. For electron numbers N < n <
N we observe saturated ground-state ferromagnetism
for all considered lattices, including square-kagome and
checkerboard lattices. An explicit expression for the sat-
urated ferromagnetic ground state in the sector n = N+1
is given in Eq. (10).

Finally we note that the t−J model on the considered
lattices may exhibit similar localized ground states in the
subspaces with n = 1, . . . ,N electrons for values of the
spin exchange interaction J up to about the hopping in-
tegral t. Another interesting variation on the considered
models refers to multiorbital systems.9 For instance, the
one-orbital Hubbard model on a frustrated ladder can be
related to a two-orbital Hubbard model on a simple chain
with a hybridization term corresponding to the hopping
on a rung. This relation between one-orbital models and
multiorbital models extends the region of applicability of
the localized-states scenario.
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