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Adaptive Lanczos-vector method for dynamic properties within the DMRG
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Current widely-used approaches to calculate spectral functions using the density-matrix renormal-
ization group in frequency space either necessarily include an artificial broadening (correction-vector
method), have limited resolution (time-domain density-matrix renormalization group with Fourier
transform method), or are limited to low-energy properties or single dominant modes (original con-
tinued fraction method). Here we propose an adaptive Lanczos-vector method to calculate the
coefficients of a continued fraction expansion of the spectral function iteratively. We show that one
can obtain a very accurate representation of the spectral function very efficiently, and that one can
also directly extract the spectral weights and poles for the discrete system.

PACS numbers: 71.10.Pm, 71.10.Fd, 78.20.Bh

Dynamical quantities such as the local density of
states, the single-particle spectral weight, or the dynami-
cal spin or charge correlation functions are of central im-
portance in theoretical and experimental condensed mat-
ter physics. Since electrons in solids are interacting quan-
tum objects, a reliable calculation of their properties usu-
ally has to resort to numerical approaches. The density-
matrix renormalization group (DMRG)! is one such algo-
rithm. Within the DMRG, the calculation of dynamical
quantities is a considerable challenge. A first attempt
by Hallberg was based on a continued fraction expansion
(CFE).? Subsequently, Kiihner and White showed that
this approach is suitable, “if only the low-energy part of
the correlation function is of interest, or if the bulk of
the weight is in one single peak”,? and applied the cor-
rection vector method,>* which since then has success-
fully been applied to many model systems.>® However,
this approach has the drawback that one needs to in-
troduce an artificial broadening into the spectra, which
can be viewed as convolution of the true spectral func-
tion with a Lorentzian of width 7. As one is eventu-
ally interested in the limit 7 — 0, one has to “deconvo-
lute” the spectrum at the end of the calculation. This is,
like analytic continuation of Monte-Carlo data, a numeri-
cally ill-defined procedure.® Furthermore, the calculation
of the correction vector at every step of the DMRG is
very time-consuming and the frequencies that one can
address are limited. Another popular approach to cal-
culating spectral functions is to Fourier-transform time-
dependent DMRG data.” To obtain good frequency res-
olution, one has to calculate time-domain data over a
long time interval. However, accessing long time scales is
limited by either a loss of accuracy due to the approxi-
mate nature of the DMRG, or by finite-size effects such as
reflections from open ends. A method that can resolve
spectral features with high resolution and no artificial
broadening is therefore desirable. Here we present an
adaptive Lanczos-vector method (ALM) that takes ad-
vantage of the CFE used in Ref. 2, but gains efficiency
by adapting the basis as in adaptive time evolution.

The spectral function for the operators A and B is
2mip; p(w) = G4 p(w +107) — G4 (w —107), where
G ;i (%) denotes the zero-temperature Green’s function.

Here we will take B = AT, yielding
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where |10) is the ground state of Hamiltonian H, E; is
the ground-state energy, and s = +1/ — 1 when A is
a bosonic/fermionic operator. One of several ways to
represent the resolvent in Eq. (1) is the CFE28
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with a similar expression for el )AT' The coefficients a;, b;
of this CFE can be calculated using the recursion formula
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which is essentially the one used in the Lanczos method,
but with starting vector | fy) replacing a random vector.
Thus, we will call the |f;) Lanczos vectors in the fol-
lowing. Hallberg? used the CFE (2) and the recursion
formulae (3) to obtain spectral functions via a multi-
target DMRG, i.e., by optimizing the DMRG basis for
the ground state and the Lanczos states simultaneously.

The structure of the recursion formula (3) suggests im-
plementing an iterative method to calculate the Lanczos
vectors in the DMRG that optimizes the basis for only the
three Lanczos vectors needed at each recursion step. One
initially calculates the ground state |1)o) of the system to
the desired accuracy with the usual DMRG algorithm.
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One then performs single finite-system sweeps, simulta-
neously targeting the additional vectors |fo) and |f1),
from which one can evaluate ag, a1, and b;. The recursion
proceeds by replacing [to), |fo), and [f1) by |fo), |f1),
and the new vector |f2). At this point, a technical sub-
tlety arises: |fo) and |f1) cannot be recalculated because
there is no longer a condition to optimize them. Instead,
we transform the wave function from the previous finite-
size DMRG step to the new superblock configuration®
at every step of the DMRG sweep. One DMRG sweep
through the system thus suffices to calculate the Lanczos
vector |f;) and the parameters a; and b;. As one needs
to target only three Lanczos vectors simultaneously, the
number m of basis states necessary to obtain an accurate
representation is generally substantially smaller than in
the original algorithm.? We will come back to this point
later. Here we emphasize only that we avoid calculating
the ground state at each DMRG step, speeding up the
calculation dramatically; the most time-consuming part
left in the Lanczos iteration is now the diagonalization of
the reduced density matrix needed to initialize the next
DMRG step. After iterating the recursion relation often
enough, one obtains a sequence {(a;, b;)} from which one
can calculate the Green’s function, Eq. (2).

We test the method on a model of spinless fermions on
a chain with Hamiltonian
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where CET) denotes the usual creation (annihilation) op-
erators for an electron at site i, and n; denotes the oc-
cupation number operator. Here we take A = ¢; and
calculate the spectral function p(x = i,w) at the center
of the chain for a system at half filling. In Fig. 1, we
compare the original (OLM) and the ALM implementa-
tion of the CFE with the exact solution on a chain of
length L = 40 in the free-fermion limit, U = 0. Both
implementations do not give a clear hint as to when to
stop the Lanczos iteration. We have evaluated the broad-
ened spectral functions after 200 Lanczos iterations, see
below. Following Kiihner and White,®> we do not target
all Lanczos vectors in the OLM but only a small fraction
of them. We then calculate the remaining vectors by
straightforward application of the recursion. To achieve
good convergence of the DMRG, we assign a weight of 0.5
to the ground state and equal weights to the other Lanc-
zos vectors (one could also give them weights according
to their spectral weights). This large freedom, especially
in choosing the number of targeted Lanczos states, is in
our a view a disadvantage of the OLM, as the optimal
parameters are not obvious, and the results depend on
their choice. Employing the truncation error as measure
of the quality of the spectral function is also not possible,
as it depends only on the number of targeted states and
their weights.

In Fig. 1 we have used m = 1500, 25 sweeps, and eleven
target states, yielding a maximum truncation error of
1076, There is no way to determine the quality of the
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FIG. 1. (Color online) Broadened spectral function for spin-
less fermions (L = 40,U = 0,7 = 0.05,200 Lanczos vectors)
calculated with the new adaptive implementation (ALM), the
original implementation (OLM) and compared to the exact
solution. The DMRG truncation number is given by m.

representation of the following Lanczos states (one can
only check their orthogonality), but if we would have
tried to target all Lanczos states, the truncated weight
would have been be much higher than 1076, In addition,
the convergence is unstable, as small changes in the first
Lanczos vectors will lead to bigger changes in subsequent
Lanczos vectors.

In the ALM, we can increase the number of states dur-
ing the Lanczos iteration, as we do not need to calculate
the ground state at each step. We notice that the num-
ber of states needed for a good representation of Lanczos
vectors increases with the number of iterations desired.
For m = 1500, the maximum truncation error per sweep
for the ALM increases from 10715 (ground state and first
two Lanczos vectors) to 10~% for the last three Lanczos
vectors. As already noted for the OLM,? the low-energy
portion (w < 1) is well-reproduced by both methods. De-
viations occur in the high-energy part of the spectrum,
notably in both position and weight distribution for the
OLM. Here the ALM already shows much better agree-
ment with the exact solution for m = 1500. Increasing to
m = 3000 for the Lanczos iterations in the ALM, one al-
most perfectly reproduces the exact solution. Note that
m = 1500 is the maximum number of states accessible in
the OLM with our computational resources; the simul-
taneous optimization of the ground state and all other
Lanczos states prevents calculations with larger m.

Another advantage of the ALM is its shorter run-time.
For m = 1500 our calculations used ~ 30k on a standard
workstation for the ALM and ~ 90h for the OLM. We
emphasize, however, that the run-time is determined by
several parameters and thus should be interpreted with
some care. For example, the ALM scales linearly with
the number of Lanczos iterations, whereas the original
implementation is roughly independent of the iteration
number. The run-time of the latter, however, strongly
depends on the number of Lanczos states targeted, be-
cause more target states increase the number of DMRG
sweeps needed to achieve convergence.

Since the CFE gives an analytical expression for the
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FIG. 2. (Color online) Spectral weights evaluated for different
numbers of coefficients (a) and flow of the eigenvalues as a
function of the number of Lanczos steps i (b) for spinless
fermions (L = 40, U = 0, m = 3000).

spectral function, we can take the limit 7 — 0 so that
the spectral function p;4:(w) = >0, d(w — wy) —
sy, 4 6(w +wy) is a series of §-functions, where w,, =
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states of H with eigenenergies F,. Evidently, all of the
information on the spectral function is contained in the
weights QX and poles w,, = +AFE,. Furthermore, one
will always obtain a discrete and finite set of poles for
any finite system. Since the DMRG treats finite systems,
the spectral weights and pole positions can be calculated
directly. Such a calculation has two important advan-
tages: (i) One can study the size-dependence of spectral
properties in a very controlled manner. (ii) It is possible
to obtain precise values for the energies of the low-lying
excitations;'? they are given by the pole positions w,,
which can be directly obtained as the eigenvalues of the
tridiagonal matrix T%j = ai,15ij + bl (5j,i+1 + 6i+1,j)-3
The poles of the Green’s function are located on the real
axis and they are discrete. Therefore, one can integrate
along a closed path C in the complex plane chosen to en-
close one single singularity, say at w,. According to the
residue theorem, the weight €2, of this pole is then

and |n) are the eigen-

omi O, :/ [G(wn — €+ 17) — Glwn + € +17)] dy.
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The parameter € must be chosen to be smaller than the
distance to the next eigenvalue, € < |w;, — wp+1]. Using

this procedure with the position of the poles known, the
spectral weights can be calculated to high precision using
numerical integration.

In Fig. 2(a) we compare the weights and positions of
the poles calculated with the DMRG and the ALM to
the exact values on a chain of length L = 40, which are
given by Q, = Z5[sin((kf + kn)x)[?, w, = 2cos(kn),
where k, = 775, n € {1,..., L}, and ky is the Fermi
wave vector. For small energies, the agreement is nearly
perfect, while deviations occur for large energies. The
quality of the agreement depends on the number of co-
efficients a;, b; taken into account. One finds that after
an initial improvement, no improvement occurs when one
further increases the number of coefficients.

The origin of this behavior can be understood from
Fig. 2(b), which depicts the flow of the eigenvalues of
the matrix 7;; as a function of the number of Lanczos
coefficients. The convergence of the first few eigenvalues
is evidently rapid. The flow of the eigenvalues therefore
gives a nice criterion for stopping the iterations (also for
the OLM). However, after approximately 50 iterations,
an eigenvalue with nearly vanishing weight appears and
subsequently moves rapidly to zero energy. More such
eigenvalues follow, at rapidly increasing frequency. This
appearance of so-called “ghost” eigenvalues is well-known
in the Lanczos method. These ghost eigenvalues are
caused by the loss of orthogonality of the Lanczos vec-
tors due to numerical error.'"'? Their appearance here
is therefore not surprising, in particular because the cal-
culated Lanczos vectors also include an error from the
approximate DMRG representation. We find that this
effect is enhanced as one reduces the number of states
within the DMRG. Thus, the study of the flow of the
eigenvalues makes it possible to control the quality of
the spectral function. Note that such ghost eigenvalues
also occur within the OLM. As far as we know, this prob-
lem was never addressed in detail for this method. While
the ghost eigenvalues seem, at first glance, to be a seri-
ous problem, we emphasize that, for the spectral func-
tion in particular, they do not appear to cause real harm
because they possess only very small weight. This is evi-
dent from the scaling in Fig. 2(b) and also from the fact
that all the ghost eigenvalues are located on the abscissa
in Fig. 2(a). This observation is just an empirical one
at present. However, as long as this remains true, the
method will be insensitive with respect to the occurrence
of ghost eigenvalues, except for regions with very small
spectral weight. Here it is difficult to distinguish ghosts
from small but real spectral weights. One possibility is
to examine their convergence.''2 Another problem with
ghosts is that they lead to a violation of sum rules due
to double-counting. If one adds up just the real spectral
values there will be a missing weight that is given by the
sum of all ghost values. Aslong as the weight of the ghost
values is small, this will not lead to severe violations of
sum rules and can be used as a measure for the ghost
problem.'® Another, in our opinion, much more severe
problem is the poor convergence at large energies. This



0.35H iter. Continued fraction, n=0.1
’ Correction vector, n=0.1
0.30}| — iter. Continued fraction, =0.2
+ + Correction vector, n=0.2
0.25] 5
—
30.20 [t S&(
=0.15 e

0.10 M X
. \

0.05[;#
0.00p: : ‘ : ‘ ‘ ‘
0.0 0.5 1.0 :t.)5 2.0 2.5 3.0
FIG. 3. (Color online) Comparison of the spectral weight

calculated using the adaptive Lanczos-vector method with
that calculated using the correction vector method for dif-
ferent broadenings n (U = 1.0,mcv = 300,marm =
3000, 250 Lanczos vectors).

could be addressed by spectral transformations, which
are a standard method for improving convergence of ex-
cited states within the Lanczos method.!'?

We now consider finite interaction, U = 1, and com-
pare our method to the correction vector method.?* The
correction vector can be efficiently calculated by minimiz-
ing a functional at every step of the DMRG,* but one
must include a finite broadening in this process. Each
broadening requires a separate DMRG run, in contrast
to the ALM, which can evaluate the Green’s function
readily for any set of frequencies and arbitrary broaden-
ing once the Lanczos coefficients have been calculated.
In Fig. 3, we compare results from the two methods for
two different values of the broadening, n = 0.1 and 0.2.
We find very good agreement overall, especially for small
energies. As expected, there are deviations at high en-
ergies, which become more pronounced with decreasing
broadening.

We have shown that the ALM is capable of calculat-
ing the spectral weights and poles accurately within the

DMRG. In contrast to the OLM, we obtain the correct
weights and poles of a Green’s function up to energies
of the order of half the bandwidth with only moderate
resources, and, as long as the spectral weight is not too
small, a reasonable reproduction of the spectrum even at
larger energies. A clear advantage of the CFE in gen-
eral is that it is based on an analytical expression for the
Green’s function, making it possible to evaluate it at an
arbitrary set of frequencies with any possible broadening
without having to repeat the DMRG calculation. In ad-
dition, one can extract irreducible quantities such as self-
energies directly as continued fractions. The inaccuracies
that appear at higher energies can be traced to a loss of
orthogonality of the Lanczos vectors due to systematic
and numerical errors. In order to improve the accuracy of
spectral functions at higher energies, the truncation num-
ber m must be increased. This increase in m can become
quite resource-intensive in standard DMRG implementa-
tions. However, an improvement in efficiency could be
achieved by using the Matrix-Product-State (MPS) for-
mulation of the DMRG.!® Within the MPS formulation,
one can variationally optimize the three Lanczos vectors
in the recursion formula separately, potentially leading
to much better performance. Another advantage is that,
within the MPS formulation, the Hamiltonian can be rep-
resented exactly (see Ref. 16 for an introduction), thereby
further reducing systematic errors. Finally, we point out
that this recursive approach to calculate a special basis
for the evaluation of spectral functions is not limited to
the Lanczos basis. For example, expansion in Chebyshev
polynomials leads to a similar recursion formula.!”
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Note added: After completion of this work, we learned
that Holzner et al.'® have shown that an adaptive method
using Chebyshev polynomials in combination with MPS
is highly efficient and gives accurate spectral functions.
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