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The spin-1/2 Heisenberg antiferromagnet on the frustrated diamond-decorated square lattice is
known to feature various zero-field ground-state phases, consisting of extended monomer-dimer and
dimer-tetramer ground states as well as a ferrimagnetic regime. Using a combination of analytical
arguments, density matrix renormalization group (DMRG), exact diagonalization, as well as sign-
problem-free quantum Monte Carlo (QMC) calculations, we investigate the properties of this system
and the related Lieb lattice in the presence of a finite magnetic field, addressing both the ground-state
phase diagram as well as several thermodynamic properties. In addition to the zero-field ground
states, we find at high magnetic field a spin-canted phase with a continuously rising magnetization for
increasing magnetic field strength, as well as the fully polarized paramagnetic phase. At intermediate
field strength, we identify a first-order quantum phase transition line between the ferrimagnetic and
the monomer-dimer regime. This first-order line extends to finite temperatures, terminating in a
line of critical points that belong to the universality class of the two-dimensional Ising model.

I. INTRODUCTION

The study of strongly frustrated quantum magnets is a
central topic in contemporary condensed matter research.
Indeed, magnetic frustration, introduced, e.g., by com-
peting antiferromagnetic exchange couplings, can lead to
the stabilization of non-classical ground states in quan-
tum magnets [1–4]. In most cases, these non-magnetic
states are characterized by the formation of strong local
singlets among small sub-clusters of spins, as well as the
emergence of an extensive ground-state entropy. In the
most favorable case, it is possible to obtain exact analyt-
ical expressions for the ground-state properties, such as
for the Shastry-Sutherland model in the regime of strong
dimer coupling [5–8]. In this system, quantum spin de-
grees of freedom are arranged on a two-dimensional lat-
tice in an orthogonal manner to form a frustrated array of
coupled spin dimers. For strong intra-dimer coupling (as
compared to the inter-dimer coupling), an exact product
state of dimer singlets forms the system’s ground state.
Later, it was furthermore found that the spin-1/2 ver-
sion of this quantum spin model finds an almost perfect
realization in the copper-based compound SrCu2(BO3)2
[7, 9]. This system has since then been studied exten-
sively with respect to both the ground state and ther-
mal properties [9–17] as well as its rich physics in the
additional presence of a magnetic field, notably various
plateaux in its magnetization curve [9, 18–25].

The dimerized nature of the low-energy states in the
Shastry-Sutherland model not only gives rise to interest-
ing physics, but is actually also favorable for a numer-
ical treatment. Indeed, the Shastry-Sutherland model
is not only a showcase for tensor-network approaches
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FIG. 1. Illustration of the diamond-decorated square lattice,
with a unit cell indicated (dashed square), along with the
labeling of the five different sites (circles) within the unit cell
and the two different exchange couplings J1 (thin black lines)
and J2 (thick red lines).

[17, 22, 26–29], but it also allows one to use efficient
Quantum Monte Carlo (QMC) simulations throughout
a large part of the dimer phase [28–30]. Remarkably, the
latter extends to a generalized version of the Shastry-
Sutherland model [31, 32] where in a certain limit, that
is equivalent to a fully frustrated bilayer model [33–36],
the QMC sign problem disappears completely. The fully
frustrated bilayer model thus becomes accessible to de-
tailed investigations at finite temperature via QMC sim-
ulations [37–39]. In fact, the identification of a first-order
line that terminates at a finite-temperature critical point
[39] in the fully frustrated bilayer model was an impor-
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FIG. 2. Ground-state phase diagram of the spin-1/2 Heisen-
berg antiferromagnet on the diamond-decorated square lat-
tice in zero magnetic field as obtained from Ref. [42] con-
taining the Lieb-Mattis (LM), dimer-tetramer (DT) and the
monomer-dimer (MD) phase. In the illustration of the dif-
ferent ground states, blue (orange) ovals denote spin triplet
(singlet) states on the dimers. A tetramer singlet of the DT
phase is illustrated by a rhombus.

tant guiding element to identify similar physics in the
Shastry-Sutherland model and ultimately SrCu2(BO3)2
[17]. Note, furthermore, that the low-energy high-field re-
gion of the fully frustrated bilayer model permits a map-
ping to a classical lattice gas, thus allowing for a rigorous
treatment of its low-energy thermodynamics, including a
finite-temperature ordering transition [40, 41].

Another highly frustrated two-dimensional quantum
spin system of coupled orthogonal spin dimers is the
Heisenberg antiferromagnet on the diamond-decorated
square lattice, shown in Fig. 1. This model contains,
in addition to the dimers (along the J2 bonds), a further
set of spins that are coupled to other (dimer) spins only
by the J1 bonds. In the large J2-limit, for J1/J2 → 0,
the spins coupled solely through the J1 bonds thus lack
a partner spin to form a singlet, and we therefore refer
to these spins as monomer spins. Hirose et al. have per-
formed a detailed investigation of its zero-field ground-
state properties [42–46], but little is known otherwise
about this model. The zero temperature zero-field phase
diagram exhibits three distinct ground states, as illus-
trated in Fig. 2, and promises interesting physics also
in finite fields, respectively at finite temperature. Here,
we shortly introduce these phases, with further details
provided in the following sections. In the case of large
dimer coupling J2, the ground state is an exact product
state formed by dimer singlet states on all the J2 dimers,
while the remaining spins (referred to as monomer spins)
are effectively decoupled. This leads to an extensive
ground-state entropy of ln(2) per unit cell in this regime
(J2/J1 > 2), which is denoted the monomer-dimer (MD)
phase. On the other hand, for weak J2, the system prefers
to form dimer triplet states on all the J2 dimers, while
the monomer spins predominantly orient themselves op-
posite to the polarization of the dimers. This leads to

a ferrimagnetic state, akin to the ferrimagnetic ground
state of the mixed spin-1 and spin-1/2 model on the Lieb
lattice [47]. Its ferrimagnetic polarization follows from
the Lieb-Mattis theorem [48] in terms of the two differ-
ent sublattices of the Lieb lattice. This phase is therefore
also denoted by “LM” in the following. These two phases,
MD and LM, are separated by a further gapped phase,
the dimer-tetramer (DT) phase, cf. Fig. 2. In this phase,
two different kinds of local singlets form: besides the J2-
dimer singlets, also singlets on larger clusters with four
spins are formed: namely, among the tetramers that are
each composed of one J2-dimer and its two neighboring
J1-coupled monomer spins. In the DT phase, the ground-
state manifold is again highly degenerate and consists of
all configurations of closed packings of tetramers, with
the remaining J2-dimers forming dimer (two-site) sin-
glets.

We here examine the spin-1/2 Heisenberg antiferro-
magnet on the diamond-decorated square lattice in a
magnetic field. In particular, we explore the ground-state
phase diagram in the presence of a finite magnetic field as
well as the thermal properties. For this purpose, we use a
combination of analytical approaches and various compu-
tational methods, including exact diagonalization (ED),
density matrix renormalization group (DMRG) calcula-
tions [49–51] and stochastic series expansion (SSE) QMC
simulations [52–54], based on a dimer-decoupling of the
Hamiltonian [37, 55], in order to render the QMC sign-
problem free.

After introducing the model in more detail in the fol-
lowing section II, we describe the analytical and com-
putational approaches that we used in Secs. III and IV,
respectively. Our results for the ground-state properties
are presented in Sec. V, and those at finite temperatures
in Sec. VI. In passing, we provide reference data for the
mixed spin-1/2 and spin-1 Heisenberg model on the Lieb
lattice, compare also App. A. Finally, we provide our
conclusions and future perspectives in Sec. VII.

II. MODEL

In the following, we consider the spin-1/2 Heisenberg
antiferromagnet on the diamond-decorated square lattice
in a magnetic field. The lattice is shown schematically in
Fig. 1 and the Hamiltonian of the model is given by

H = J1

N∑
i=1

[
Si,1 ·

(
Si,2 + Si,3 + Si,4 + Si,5

+Si−x̂,2 + Si−x̂,3 + Si−ŷ,4 + Si−ŷ,5
)]

+J2

N∑
i=1

(
Si,2 · Si,3 + Si,4 · Si,5

)
−h

N∑
i=1

5∑
µ=1

Szi,µ , (1)
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where Si,µ = (Sxi,µ, S
y
i,µ, S

z
i,µ) represents the spin-1/2 op-

erators assigned to the µ-th spin within the i-th unit cell.
We denote the corresponding lattice site by (i, µ). Fur-
thermore, the index i − x̂ (i − ŷ) refers to the unit cell
to the left (below) the i-th unit cell. Here, we consider
a finite lattice with N unit cells and Ns = 5N sites, im-
posing periodic boundary conditions, and with N → ∞
in the thermodynamic limit (TDL). Typically, we use
square lattices with N = L2. Furthermore, J1 and J2 are
the two exchange interactions drawn in Fig. 1 by black
and red lines, respectively. The last term in H accounts
for the Zeeman coupling of the spin-1/2 particles to an
external magnetic field h.

The Hamiltonian (1) can also be expressed in terms
of the composite spins on the 2N dimers formed by the
J2 bonds: In each unit cell i, a vertical dimer is formed
by the spins Si,2 and Si,3, and the total dimer spin for
this dimer d is then Sd = Si,2 + Si,3. Similarly, the
spins Si,4 and Si,5 form a horizontal dimer, and in this
case Sd = Si,4 + Si,5. All total dimer spins represent
locally conserved quantities with well defined quantum
spin numbers. The remaining spins Si,1 are referred to
as monomer spins. One can then express the Hamiltonian
(1) in a more compact form:

H=J1

2N∑
d=1

∑
(i,1)∈Nd

Sd · Si,1 +
J2

2

2N∑
d=1

(
S2
d −

3

2

)

− h
2N∑
d=1

Szd − h
N∑
i=1

Szi,1, (2)

where summations over d extend over all the 2N dimers,
and the inner sum of the first term extends over the two
monomer spins Si,1 that are nearest neighbors of the d-th
dimer (cf. Fig. 1), i.e., the lattice site (i, 1) is an element
of the set of the two nearest-neighbor sites Nd of the d-
th dimer. More specifically, for a vertical (horizontal)
dimer, these are the two monomer spins to the left and
right (top and bottom) of that dimer.

The first term in the Hamiltonian (2) corresponds to
the mixed spin-Sd and spin-1/2 Heisenberg model on a
Lieb lattice, whereas the second term provides a trivial
shift of the energy depending on the quantum spin num-
bers Sd. Note that two different values of the quantum
spin numbers Sd = 0, 1 are available for the composite
spin on each dimer, whereby the value Sd = 0 corre-
sponds to a singlet-dimer state

|s〉d =
1√
2

(|↑↓〉d − |↓↑〉d) . (3)

This leads to a fragmentation of the effective mixed-spin
Heisenberg models obtained from the Hamiltonian (2)
upon considering all possible combinations of quantum
spin numbers Sd for all the dimers. Hence, the ground
state of the Heisenberg antiferromagnet on the diamond-
decorated square lattice can be related to the lowest-
energy eigenstates of the effective Heisenberg models (2)
taking into consideration all available combinations of

the quantum spin numbers Sd. In the following, we first
introduce our methods and then explore the rich ground-
state phase diagram of the HamiltonianH, shown further
below in Fig. 3.

III. EXACT ANALYTICAL GROUND STATES

We first consider the parameter regime with a dom-
inant dimer coupling J2, in which we can obtain exact
analytical results for the ground state. More specifically,
for J2/J1 > 2 one can use the variational principle in
order to derive an exact ground state of H at zero field
[43]. The main idea of this approach consists in decom-
posing the Hamiltonian into 4N cell Hamiltonians (this
concrete decomposition is different from Ref. [43]):

H =

2N∑
d=1

∑
(i,1)∈Nd

Hd,i, (4)

with each cell Hamiltonian Hd,i corresponding to a single
triangle involving one dimer d and one of its two nearest-
neighbor monomer spins, i.e.,

Hd,i =
J2

4

(
S2
d −

3

2

)
+ J1Si,1 · Sd. (5)

Note that each dimer d is part of two triangles, leading
to the additional factor of 1/2 for the intra-dimer term
proportional to J2 in Hd,i as compared to Eq. (2).

According to the variational principle [5, 56–58], the
ground-state energy of H has a lower bound, given by
the sum of the lowest-energy eigenvalues ε(0)

d,i of the cell
Hamiltonians (5),

E0 = 〈Ψ0|H|Ψ0〉

=
〈

Ψ0

∣∣∣ 2N∑
d=1

∑
(i,1)∈Nd

Hd,i

∣∣∣Ψ0

〉
≥

2N∑
d=1

∑
(i,1)∈Nd

ε
(0)
d,i . (6)

The energy-spectrum of each cell Hamiltonian Hd,i can
be expressed in terms of quantum spin numbers St and
Sd which are assigned to the composite spin operators
St = Sd + Si,1 and Sd, respectively, as follows,

εd,i = −3

8
(J1 + J2) +

J1

2
St(St + 1)

+

(
J2

4
− J1

2

)
Sd(Sd + 1) . (7)

It is straightforward to show that for h = 0 the eigenstate
with quantum spin numbers St = 1/2 and Sd = 0 repre-
sents the true ground state of Hd,i whenever J2/J1 > 2.
Hence, in this regime ε(0)

d,i = − 3
8J2. A finite field then

simply leads to a polarization of the monomer spins, as
long as it does not exceed a critical value. Owing to this
fact, the overall ground state of H for J2/J1 > 2 and in
the monomer-dimer (MD) phase is

|MD〉 =

{ ∏N
i=1 |σ〉i,1 ⊗

∏2N
d=1 |s〉d, σ ∈ {↑, ↓}, h = 0∏N

i=1 |↑〉i,1 ⊗
∏2N
d=1 |s〉d, h > 0

(8)
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which has the following energy

EMD/N = −3

2
J2 −

h

2
. (9)

Note, that for h = 0 the MD phase has an extensive
ground-state degeneracy, 2N , as each of the N monomer
spins can be either in the up or down state. We will
examine in Sec. V up to which field strength the MD
phase is actually stable.

The stability condition J2/J1 > 2 of the MD phase at
h = 0 is in agreement with the results reported previ-
ously by Hirose et al. [42, 45, 46]. They also verified the
presence of the other exact ground state, referred to as
the dimer-tetramer (DT) phase. The DT ground state of
the spin-1/2 Heisenberg antiferromagnet on a diamond
square lattice involves the singlet-dimer states |s〉d and
singlet-tetramer states |t〉d, which are formed between a
dimer d and its two neighboring monomer spins, denoted
(i, 1) and (i′, 1) in the following:

|t〉d =
1√
3

(|↑〉i,1|↓↑〉d|↓〉i′,1 + |↓〉i,1|↑↓〉d|↑〉i′,1)

−1

2
(|↑〉i,1|↑↓〉d|↓〉i′,1 + |↑〉i,1|↓↓〉d|↑〉i′,1

+ |↓〉i,1|↑↑〉d|↓〉i′,1 + |↓〉i,1|↓↑〉d|↑〉i′,1) . (10)

In the DT phase, the highly degenerate ground-state
manifold corresponds to the most dense packing of the
singlet-tetramer states (10) on the diamond-decorated
square lattice, whereby one cannot accommodate more
than N/2 singlet tetramers |t〉d on the diamond-
decorated square lattice (the remaining dimers are in the
singlet-dimer state |s〉d). The ground-state energy in the
DT phase is thus given by

EDT/N =
3

2
εs +

1

2
εt. (11)

Here, εs = − 3
4J2 refers to the energy of the singlet-dimer

state |s〉d, and εt = −2J1 + J2
4 denotes the energy of the

singlet-tetramer state |t〉d. In order to obtain the actual
stability regions of these two phases for finite fields, we
turn to computational methods.

IV. COMPUTATIONAL APPROACHES

For our further analysis of the phase diagram of the
spin-1/2 Heisenberg diamond-decorated square lattice as
well as its thermodynamic properties, we have used a
combination of various computational approaches. In
this section, we provide some details regarding the appli-
cation of these different methods to the model considered
here.

A. DMRG

The ED and QMC simulations to be presented in the
next subsections indicate that there is one important

class of ground states that are not captured by the MD
and DT wave functions discussed in the previous sec-
tion: the particular choice Sd = 1 for all 2N dimers.
This amounts to an effective mixed spin-1 and spin-1/2
Heisenberg model on a Lieb lattice, given by the Hamil-
tonian (2). For h = 0, the effective Hamiltonian reads

HLM
eff = J1

2N∑
d=1

∑
(i,1)∈Nd

Sd · Si,1 +
J2

2
N. (12)

In contrast to the case of fixed dimer-singlet states, the
Hamiltonian (12) cannot be solved analytically and we
have therefore adopted the DMRG method implemented
in the Algorithms and Libraries for Physics Simulations
(ALPS) project [59] in order to find its lowest-energy
eigenstates. For this purpose, we have performed DMRG
calculations taking into account up to 2000 kept states
and up to 20 sweeps for lattices with up to N = 36 unit
cells with periodic boundary conditions. The respective
lowest-energy eigenvalue of the spin-1/2 Heisenberg an-
tiferromagnet on a diamond-decorated square lattice is
given for h = 0 by the equation:

ELM = EL +
J2

2
N, (13)

where EL denotes the ground-state energy of the mixed
spin-1 and spin-1/2 Heisenberg model on the correspond-
ing Lieb lattice with N unit cells at zero magnetic
field. According to the Lieb-Mattis theorem [48], the
lowest-energy eigenstate of the mixed spin-1 and spin-
1/2 Heisenberg model on a Lieb lattice in a zero field
belongs to the sector with the total spin given by the ab-
solute value of the difference of the total spin on the two
sublattices S = |SA−SB |. For the Lieb lattice composed
of N = 36 unit cells we have indeed obtained a ferri-
magnetic ground state with total spin S = |SA − SB | =
|72 − 18| = 54 and energy EL = −88.5600047J1, i.e.,
the ground-state energy εL = −2.46000J1 per unit cell.
We note that this value compares well to the value
εL = −2.46083J1 for the ground-state energy of the
mixed spin-1 and spin-1/2 Heisenberg antiferromagnet
on the Lieb lattice in the TDL, given in Ref. [45].

In order to construct the ground-state phase diagram
we have compared the energies (9),(11) and (13), which
were obtained either by analytical or by numerical calcu-
lations of a lattice with N = 36 unit cells. To study the
magnetization process and thermodynamic quantities in
finite magnetic field, all energies in zero field are shifted
by the Zeeman term according to the formula

E(mtot, N, h) = E(mtot, N, h = 0)− h mtot , (14)

wheremtot are the eigenvalues of Sztot =
∑N
i=1

∑5
µ=1 S

z
i,µ.

Field-driven changes of the lowest-energy eigenstates
from the sectors with the total spins mtot and m′tot are
obtained from [60]

h =
E(mtot, N, h = 0)− E(m′tot, N, h = 0)

mtot −m′tot

. (15)
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We note that within the LM phase, the ground-state en-
ergy in the TDL and finite h is given by

ELM/N = εL +
J2

2
− 3

2
h, (16)

a result that will be useful further below.

B. Exact Diagonalization

In addition to DMRG, we also performed exact diago-
nalizations of the Hamiltonian H on systems with up to
Ns = 30 spins. First, we exploit conservation of the local
spin of each dimer by expressing the Hamiltonian in the
form (2). Thus, the problem boils down to diagonalizing
the Hamiltonian for a given configuration of total dimer
spins Sd = 0, 1 [41, 55, 61, 62]. In fact, it suffices to per-
form this computation for each topologically inequivalent
pattern. We have identified the inequivalent patterns by
computer enumeration. For example, for Ns = 30 spins
(6 unit cells), we find 178 inequivalent configurations of
the dimer spins Sd. Then, we need to take the degener-
acy of the corresponding configurations into account. For
example, the configurations with all Sd = 0 or all Sd = 1
are unique, and generally there are 2Ns/5 configurations
with exactly one Sdi = 1. Furthermore, in the case of the
Ns = 30 system, there are up to 120 different realizations
of a given pattern with an intermediate number of dimer
triplets.

To diagonalize each of these cases, we first use conser-
vation of Sztot, as well as spin inversion. We further use
SU(2) symmetry to reconstruct the sector with mtot = 1
from the other ones. Thermodynamic quantities such as
the specific heat and magnetic susceptibility can then be
computed from the eigenvalues and the associated quan-
tum numbers. In sectors where we have so many Sd = 1
dimers that the Hilbert space dimensions become large,
we also use the remaining spatial symmetries of the con-
figuration to further block-diagonalize the system. The
largest matrix to be diagonalized then occurs in the sec-
tor with mtot = 2 and for all dimers in the triplet config-
uration; for Ns = 30 the resulting maximal dimension is
257304 ≈ 2.6 ·105, which is considerably smaller than the
total dimension 230 ≈ 109 of this system. Still, this sig-
nificantly exceeds the size of a previous computation [63]
where we had used a custom diagonalization routine [64],
while the present diagonalization is instead carried out
with a recent version of the Intelr Math Kernel Library.

At the end of this procedure, the full spectrum can be
reconstructed for any value of J2, J1 and h thanks to
the conservation of the total spin on the dimers and z-
component of the total spin mtot. Thus, we can evaluate
thermodynamic properties for all (J2/J1, h/J1, T/J2) by
post-processing the results of a single diagonalization run
for a given system size Ns.

C. Quantum Monte Carlo

In order to study the thermodynamic properties of
the spin-1/2 Heisenberg antiferromagnet on the diamond-
decorated square lattice on system sizes that extend be-
yond those accessible to exact diagonalization, we make
use of QMC simulations. In the following we comment
on the QMC method that we used for this purpose.

The SSE QMC method with directed loops [52–54] of-
fers a highly efficient and unbiased approach to study
quantum spin models. However, introducing geometric
frustration while working in the conventional local spin-
Sz basis generally leads to a sign problem, i.e., an expo-
nential drop of the statistical accuracy of the QMC sim-
ulations at low temperatures and large system sizes [65–
67]. Fortunately, in certain cases, this issue can be elim-
inated when performing the QMC simulations in a ba-
sis different from the local spin-Sz basis. More specifi-
cally, one considers instead appropriate basis states af-
ter decomposing the Hamiltonian into separate terms of
few-sites clusters, such as dimers or trimers [37, 55, 68].
The case of dimers can be used to eliminate the sign
problem completely for, e.g., the fully frustrated bilayer
model [37–39], while a local spin-trimer basis avoids the
sign-problem for the fully frustrated trilayer [68] S = 1/2
antiferromagnet. For the diamond-decorated square lat-
tice considered here, a finite value of the coupling J2 leads
to geometric frustration. We can avoid the associated
sign problem that persists when using the local spin-Sz
basis, by treating all J2-dimer spins in the spin-dimer ba-
sis, while leaving the local Sz-basis to the monomer spins.
In this combined 5-site basis for each unit cell, the Hamil-
tonian H can be simulated free of a sign problem, using
the SSE approach based on the abstract operator loop
update introduced in Ref. [68]. During the operator-loop
update of the SSE simulations, binary operators (such as
the bit-wise exclusive-or operation) are used in a binary
representation of the local cluster states. We refer to
Refs. [68, 69] for further details on this QMC approach.
Here, we performed QMC simulations for systems with
values L up to 24.

V. GROUND-STATE PHASE DIAGRAM

In the following we describe in detail the ground-state
phase diagram of the spin-1/2 Heisenberg antiferromag-
net on the diamond-decorated square lattice, described
by the Hamiltonian H, up to high magnetic fields, as
obtained from our combination of DMRG, exact diago-
nalization as well as analytical results.

First, we review the phases that appear at zero field
h = 0. The ground-state phase diagram in this limit
has been obtained in previous works [42, 44, 45] and it
features three distinct phases – LM, DT and MD, de-
pending on the coupling ratio J2/J1, cf. Fig. 2. In the
LM regime, the ground-state energy is minimized by all
J2-dimers being in the triplet state, while the monomer



6

0 1 2 3 4 5

J2/J1

0

1

2

3

4

5

6
h
/
J

1

LM

DT

MD

SC

PM

FIG. 3. Ground-state phase diagram of the spin-1/2 Heisen-
berg antiferromagnet on the diamond-decorated square lat-
tice in the J2/J1 − h/J1 plane, containing the Lieb-Mattis
(LM), dimer-tetramer (DT), monomer-dimer (MD), spin-
canted (SC) and the saturated paramagnetic (PM) phase.
Dashed (solid) lines denote continuous (discontinuous) quan-
tum phase transitions.

spins are oriented predominantly opposite to the dimer
spins. Note that the quantum nature of the LM ferri-
magnetic state is well observable by the reduction of the
local magnetizations of the monomer and dimer spins as
shown in Fig. 4. While quantum fluctuations reduce the
magnetization of the monomer spins by approximately
20%, the quantum reduction of the magnetization of the
dimer spins is much more subtle – only about of 5%. In
agreement with the LM theorem, both local magnetiza-
tions are consistent with the total magnetization per site
of M/MS = 3/5 (where MS denotes full saturation) that
is inherent to the LM ferrimagnetic phase. For J2/J1

between about 0.974 and 2, the zero-field ground state
is the highly degenerate DT phase, characterized by a
dense packing of the singlet-tetramer states |t〉d given
by Eq. (10), while the remaining J2-dimers reside in a
singlet-dimer state (3). In the highly frustrated parame-
ter region J2/J1 > 2 the MD phase (8) is realized in the
ground state, which was described in detail in Sec. III.

The ground-state phase diagram including the mag-
netic field h is shown in Fig. 3 in the J2/J1−h/J1 plane.
As one can see from Fig. 3, the LM phase is stable up
to about h/J1 ≈ 4 and spreads out to larger interaction
ratios J2/J1 with increasing magnetic field. By contrast,
the MD phase (8) extends towards lower interaction ra-
tio J2/J1 < 2 in finite magnetic fields as compared to
the parameter regime that is accessible to the variational
approach, cf. Sec. III. We also find that for J2/J1 ≥ 4,
the MD phase is stable all the way up to the saturation
field hsat = J1 + J2, beyond which the fully polarized,
saturated paramagnetic (PM) regime is entered. On the
other hand, the DT phase narrows quickly for finite mag-
netic fields and it disappears completely at h/J1 ≈ 0.5.

In addition to the LM, DT and MD phases, the phase
diagram in Fig. 3 exhibits two high-field phases. Be-
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FIG. 4. Local dimer magnetization 〈Sz
d〉, local monomer mag-

netization 〈Sz
i,1〉 and total magnetization M (divided by the

saturated magnetization MS) at zero temperature, as func-
tions of magnetic field h/J1 for J2 = 0 as obtained from
DMRG for a L = 6 system.

sides the fully polarized, saturated PM regime, we iden-
tify a spin-canted (SC) phase, with a continuously rising
magnetization upon increasing the magnetic field. As
shown in Fig. 4, inside the SC phase the local monomer
spins continuously align with the magnetic field upon
increasing the field strength. Initially, the local dimer
magnetization decreases slightly, before it eventually in-
creases to full polarization as well. Qualitatively, this
behavior is well captured by the classical Heisenberg
model of the mixed spin-1 and spin-1/2 model Heisen-
berg model on the underlying Lieb lattice, as detailed
in App. A: Within the SC phase, the spins are canted
with respect to the magnetic field direction, displaying
biconical structures, resembling those found in, e.g., the
classical anisotropic Heisenberg model at finite magnetic
fields [70, 71]. Fig. 3 furthermore shows that the SC
phase is separated from the PM and the LM phase by
continuous field-driven quantum phase transitions. In
contrast, all other field-driven phase transitions between
the various ground-state phases are discontinuous.

The phase diagram and the nature of the transi-
tions in Fig. 3 can be directly identified from the zero-
temperature magnetization curves for the Hamiltonian
H. These are shown in Fig. 5 along several vertical cuts
through the ground-state phase diagram. The magneti-
zation curves presented in Fig. 5 were obtained by two
different numerical methods: by exact diagonalization for
Ns = 20, 30 and by the DMRG method supplemented
with exact analytical results for Ns = 180, respectively.
Overall, the results obtained from both methods are in
excellent agreement, taking into account that within the
SC phase, the smaller size of the system either with
Ns = 20 or Ns = 30 leads to more pronounced discrete
steps in the stair-case profile of the magnetization.

More specifically, for an interaction ratio of J2/J1 =
0.5, the magnetization exhibits an extended 3/5-plateau
at low fields, characteristic of the ferrimagnetic LM
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FIG. 5. Zero-temperature magnetization curves of the spin-
1/2 Heisenberg antiferromagnet on the diamond-decorated
square lattice as obtained from full exact diagonalization and
DMRG method for system sizes Ns = 20, Ns = 30 and
Ns = 180, respectively, for several values of the interaction
ratio J2/J1. In all plots, the total magnetization M is scaled
with respect to its saturated value MS .

phase, followed by a stair-case increase of the magne-
tization, which evolves into a continuous magnetization
increase in the TDL, and eventually terminates in the
fully saturated PM phase at a magnetic field of h/J1 = 5
[cf. 5(a)]. Note that the jump ofM upon approaching the
zero-field limit is not a numerical artifact but reflects the
ferrimagnetic nature of the LM phase, i.e., the immediate
response to an infinitesimal field.

Similarly, in agreement with the ground-state phase
diagram, there exists a zero-magnetization plateau for
J2/J1 = 1.3 and J2/J1 = 1.7 in Figs. 5(b) and 5(c)
inherent to the gapped DT state (closer inspection re-
solves a tiny 1/5-plateau on the Ns = 30 system in
Figs. 5(b) – a finite-size effect on this particular clus-
ter). For larger values of J2/J1 > 2, shown in Figs. 5(d),
5(e) and 5(f), the zero-magnetization plateau disappears.
Instead, here, the monomer spins become fully polarized
within the MD phase already for an arbitrarily weak, fi-
nite magnetic field. This results in the jump of M upon
approaching the zero-field limit and the immediate on-
set of the intermediate 1/5-plateau, characteristic of the
MD phase. While for the lower value of J2/J1 = 2.5 the
3/5-plateau of the LM phase, and a subsequent steady

increase of the magnetization in the SC phase can be ob-
served, the magnetization curve for the higher value of
J2/J1 = 3.3 exhibits a discontinuous field-driven transi-
tion from the MD phase (1/5-plateau) into the SC phase.
Finally, the magnetization curve for sufficiently high val-
ues of J2/J1 ≥ 4 shows a direct jump of the magnetiza-
tion from the 1/5-plateau of the MD phase towards the
fully saturated PM regime.

VI. THERMAL PROPERTIES

In the following, we will investigate several aspects of
the thermal properties of the spin-1/2 Heisenberg model
on the diamond-decorated square lattice in the presence
of a magnetic field, focusing on the different regions of
the ground-state phase diagram, which were detailed in
the previous section.

A. Thermodynamics in the MD regime

We start by investigating the thermodynamic prop-
erties in the MD regime. Here, a simple lattice-gas
model [41, 72, 73] can be used to describe the relevant
low-energy excitations in the regime J2/J1 ≥ 4. In ad-
dition to a set of free S = 1/2 spins, corresponding to
the monomer spins Si,1 in a magnetic field, this model
contains a lattice gas of hard-core particles that corre-
spond to the dimer-singlet states on the J2-dimers. These
particles describe localized magnons, i.e., a flat band
of magnetic excitations, relative to the fully polarized
state [41, 72–74]. The lattice-gas model is given, up to a
constant, by the effective Hamiltonian

HMD
eff = −h

N∑
i=1

Szi − µ
2N∑
i=1

nd , (17)

where nd ∈ 0, 1 denotes the local occupation number of
the hard-core particles. A value of nd = 1 (nd = 0) cor-
responds to the presence of a singlet (triplet) state on
the J2-dimer d. The chemical potential µ = J1 + J2 − h
is given by the energy difference between the singlet and
lowest-energy triplet state on the lattice. All thermody-
namic properties then follow from the free energy

F

N
= 2J1 +

J2

2
− 2h− T ln

[
2 cosh

(
h

2T

)]
−2T ln

[
1 + exp

(µ
T

)]
, (18)

where the constant ensures that, at T = 0, the ground-
state energy detailed in Sec. III is recovered, including
Eq. (9) for µ > 0. The ground state corresponds to a
fully occupied (empty) lattice of singlets below (above)
the saturation field hsat = J1 + J2. One can approx-
imately describe the thermodynamic properties in the
MD regime also by a spin model that accounts for all
the dimer states (this model corresponds to the limit
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FIG. 6. Specific heat C divided by the temperature T/J1 as
a function of temperature in the MD phase at an interaction
ratio of J2/J1 = 4 and a magnetic field of h/J1 = 1 as ob-
tained from full exact diagonalization, QMC as well as the
effective lattice-gas model.

J1 = 0 of H). However, the above lattice-gas model
already turns out to describe the low-temperature ther-
modynamics remarkably well. Indeed, Figs. 6 and 7 show
that the lattice-gas model describes the thermodynamic
properties at low temperatures rather accurately, up to
T/J1 ≈ 0.4, where the specific heat starts to show no-
ticeable deviations to the data obtained using exact di-
agonalization (Ns = 30) and QMC (Ns = 80), indicating
that at higher temperatures additional excitations be-
come relevant (note that over the whole regime there is
an excellent agreement between the Ns = 30 ED data
and the Ns = 80 data obtained from QMC). From the
phase diagram in Fig. 3 we expect additional excitations
to become most relevant in the regime near h/J1 ≈ 5 at
J2/J1 = 4, due to the SC phase. Indeed, in Fig. 7(c), for
T/J1 = 0.3, small differences are already resolved in this
magnetic-field range.

The magnetization is less susceptible to these addi-
tional states, and exhibits an excellent agreement with
the numerical data for all temperatures considered here.
It is noteworthy that in all cases, the results obtained
from exact diagonalization and QMC agree very well with
each other, indicating that the system sizes considered
for the exact diagonalization are already representative
of the TDL in this regime. Our analysis therefore indi-
cates that in addition to the exact analytical results for
the MD ground state, also the low-temperature thermal
properties can be understood analytically by means of a
simple effective lattice-gas model given by the Hamilto-
nian (17).

B. Thermodynamics in the LM and SC regime

Next, we consider the thermodynamic properties in the
LM and SC phase. In the LM phase, we expect the low-
temperature thermodynamics to be governed by the un-
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Lattice gas

0 5

h/J1

T/J1 = 0.4 (f)

ED,Ns = 30

FIG. 7. Thermodynamic properties in the MD phase at in-
teraction ratio J2/J1 = 4 as a function of magnetic field h/J1
obtained from full exact diagonalization, QMC as well as the
effective lattice-gas model. Top row: Specific heat C for tem-
peratures: (a) T/J1 = 0.2, (b) T/J1 = 0.3, (c) T/J1 = 0.4.
Bottom row: Magnetization M , divided by the saturation
magnetization MS for temperatures: (d) T/J1 = 0.2, (e)
T/J1 = 0.3, (f) T/J1 = 0.4

derlying mixed-spin Lieb lattice. For a quantitative com-
parison we considered the case of zero interaction J2 = 0.
In Fig. 8, we show the specific heat C for the diamond-
decorated square lattice model as obtained from ED (for
Ns = 30 sites) and QMC as well as for the corresponding
mixed-spin Lieb lattice model. We observe that in both
cases, h = 0 and h = J1, the mixed-spin Lieb lattice
model captures the low-temperature asymptotic behav-
ior, while the behavior differs noticeably at intermediate
temperatures. This deviation is due to additional con-
tributions with singlet configurations for the diamond-
decorated square lattice. These additional states are lo-
cated at higher energies, but they have a high density
such that they lead to a relevant contribution to C in the
temperature window of Fig. 8.

Another point concerns the strong finite-size effects in
Fig. 8(a). These are due to the h = 0 ground state being
a spin-3Ns/10 multiplet (compare Sec. IVA) such that
on a finite-size system, part of the entropy is located at
T = 0. The case Ns = 2000 (1200) should be a good
approximation to the TDL, as is indicated by compari-
son with the Ns = 980 (588) data. Indeed, these data
for C/T in Fig. 8(a) approach a constant for T → 0,
as expected for a ferro- or ferrimagnet in two dimen-
sions, while the activated low-temperature asymptotics
of the Ns = 30 ED data reflects a finite-size gap of about
0.434J1.

Applying a magnetic field h = J1 opens a gap of the
same size in the excitation spectrum. This leads to acti-
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FIG. 8. Specific heat C divided by temperature T/J1 as
a function of temperature at magnetic field h/J1 = 0 (top
panel) and h/J1 = 1 (bottom panel). We compare results for
the diamond-decorated square lattice model for J2 = 0, with
results on the mixed-spin Lieb lattice. For comparison, the
Lieb lattice data are scaled by a factor of 3/5 to account for
the larger unit cell on the diamond-decorated square lattice.

vated low-temperature behavior and negligible finite-size,
as the good agreement of the ED and QMC results for
Ns = 30 and 80 (18 and 48) in Fig. 8(b) shows. As in
the case h = 0, we again observe significant differences
between the diamond-decorated square lattice model and
the mixed-spin Lieb lattice throughout most of Fig. 8(b)
with the exception of the region T . 0.2J1, where
we observe the exponentially activated low-temperature
asymptotics. This deviation can again be attributed to
the large number of additional contributions with singlet
configurations for the diamond-decorated square lattice
that we already mentioned in the context of Fig. 8(a).

Figure 9 presents similar results for C/T at h/J1 = 4.5,
i.e., a point in the SC phase. There is a maximum
at temperatures T > J1 that, like for Fig. 8(b), is af-
fected by only small finite-size effects. Furthermore,
also like in Fig. 8, the diamond-decorated square lattice
model and the mixed-spin Lieb lattice differ in this high-
temperature region. There is a second low-temperature
maximum for T just above 0.1J1 that is remarkably
well captured by the mixed-spin Lieb lattice. This low-
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L = 24

L = 20
Lieb, L = 20

FIG. 9. Specific heat C divided by the temperature T/J1
as a function of temperature in the SC phase for J2/J1 = 0
and h/J1 = 4.5 as obtained from QMC. The dashed vertical
line denotes the KT transition temperature TKT, given in the
main text. The corresponding data for the mixed-spin Lieb
lattice model is shown for comparison as well, and has been
rescaled by a factor of 3/5 to account for the larger unit cell
on the diamond-decorated square lattice. The inset shows the
temperature dependence of the spin stiffness of the diamond-
decorated square lattice model for the same parameters for
different system sizes, along with the dashed line indicating
TKT.

temperature maximum in C/T is affected by stronger
finite-size effects, but we checked that the residual finite-
size effects on the L = 20 data shown in Fig. 9 are not
substantial.

We recall that the SC phase is characterized by (quasi-
)long-range antiferromagnetic (XY) order in the plane
perpendicular to the magnetic-field direction at zero
(low) temperatures, as discussed in the previous section.
At non-zero temperatures, this leads to a (Berezinskii-
)Kosterlitz-Thouless (KT) transition [75–77] at a finite
temperature TKT. Beyond TKT, the XY quasi-long range
order is destroyed by the proliferation of vortex excita-
tions. We have estimated TKT using a standard finite-size
scaling analysis of the spin stiffness ρS , as obtained from
the spin winding number fluctuations [78, 79] (cf. App. B
for details). The inset of Fig. 9 shows the temperature de-
pendence of ρS for J2/J1 = 0 and h/J1 = 4.5 for increas-
ing system sizes, exhibiting a drop near T/J1 ≈ 0.08.
From a quantitative analysis [78, 79] of the QMC data,
along the line h/J1 = 4.5, the KT transition temperature
is found to be TKT/J1 ≈ 0.0825 across the SC regime (cf.
App. B for details). The specific heat C displays a max-
imum at a temperature slightly above the KT transition
temperature, as typical for the KT transition, associated
to the entropy release from vortex unbinding [80]. This
is shown explicitly in Fig. 9 for the interaction J2 = 0
and the magnetic field h/J1 = 4.5.
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C. Thermal LM-MD phase boundary

Finally, we turn to consider the thermal properties
within the parameter regime where the transition be-
tween the LM and MD phases takes place at zero tem-
perature. As detailed in Sec. V, in the presence of a
finite magnetic field h & 0.5J1, the LM and MD states
at T = 0 are separated by a direct discontinuous quan-
tum phase transition line. Across this line, the J2-dimer
states change from triplets in the LM phase to singlet
states in the MD phase (the monomer spins are fully po-
larized along the magnetic field in the MD phase, while
their mean value is reduced due to quantum fluctuations
in the LM phase).

Recently, such discontinuous quantum phase transi-
tions in coupled spin-dimer and spin-trimer systems were
examined in other models [17, 39, 68], and it was shown
that first-order thermal phase transitions emerge out
from the discontinuous quantum phase transition line,
terminating in a line of thermal critical points. More-
over, these thermal critical points belong to the two-
dimensional Ising universality class, in accord with the
binary variable associated to the presence/absence of a
singlet state on the spin dimers (such as the variable nd
introduced above). Here, the LM-MD transition line of-
fers another realization for such a scenario. We thus ex-
amine it in more detail.

As an example, Fig. 10 shows the mean singlet occu-
pation

ns =

〈
1

2N

2N∑
d=1

nd

〉
(19)

of the J2-dimers as a function of J2 along a cut at con-
stant h/J1 = 2.5 across the LM-MD transition region.
At low temperatures, this quantity exhibits a jump from
a value of 0 to a value of 1 upon increasing J2/J1 across
the quantum phase transition near J2/J1 ≈ 2.5. For
temperatures beyond about 0.3J1, we instead observe a
smooth variation of ns with increasing J2. This already
provides indication for the existence of a low-T discon-
tinuous thermal phase transition line and its termination
in a critical point. While the precise position of the crit-
ical point needs to be extracted from QMC simulations
(as detailed below), the first-order transition line at finite
temperature can be estimated by simply comparing the
free energies of both phases, following the approach used
in Refs. [39, 68].

Both the LM andMD phase have a finite excitation gap
atop their respective ground states. Here, we therefore
use a generic estimate for the free energy of a gapped
system at low T that in the relevant parameter regime is
given by

F

N
= − 1

N
T lnZ ≈ E0

N
− 2T ln(1 + e−∆/T ) , (20)

where E0 is the ground-state energy and ∆ the excitation
gap. The factor two in front of the logarithm in Eq. (20)
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FIG. 10. Mean singlet occupation in the vicinity of the LM-
MD transition for h/J1 = 2.5 as obtained from QMC for
the system size L = 4. The red line shows the first-order
transition line obtained from comparing the free energies of
both phases, extended up to the location of the critical point
(symbol), as extracted from a finite-size analysis of the QMC
data (see text for details). In the low-T region (white), the
QMC data exhibit large statistical fluctuations and have been
cut off.

accounts for the two dimers in the unit cell (note that
triplets get polarized in a magnetic field and thus no
spin-degeneracy factors enter Eq. (20)). We note that
in the MD phase and for h > J1 + J2, Eq. (20) amounts
to a low-temperature approximation of the exact expres-
sion (18) for the effective lattice-gas model with ∆ = −µ.
At a fixed magnetic field, the transition line is then ob-
tained from the points Jc2(Tc), for which the coexistence
condition FLM(Jc2 , T

c) = FMD(Jc2 , T
c) holds. Based on

Eq. (20), we expect the first-order line not to be vertical,
but to bend towards the phase with the larger excitation
gap.

For a quantitative evaluation of the transition line, we
require the values of E0 and ∆ in both phases upon ap-
proaching the transition point. The ground-state ener-
gies are given by Eq. (16) and Eq. (9) for the LM and
MD phase, respectively. We used exact diagonalization
for a system of Ns = 30 sites to extract an estimate for
the excitation gaps. The excitation gap ∆ as a function
of the interaction ratio J2/J1 for different magnetic fields
h is shown in Fig. 11. We find that upon going from the
magnetic field h/J1 = 2 to h/J1 = 2.5, the excitation
gap in the LM phase becomes larger than that in the
MD phase. We thus expect the bending of the first-order
line to change upon increasing the magnetic field. In par-
ticular, for the case of h/J1 = 2.5, considered already in
Fig. 10, the line bends slightly to the left. This is how-
ever hardly seen on the scale of the main panel of Fig. 10.
The bending is better seen in the inset, which also shows
the location of the critical point as extracted from further
QMC simulations (as detailed below). Note that based
on the free-energy argument, we cannot determine the lo-
cation of the critical point, but from the inset of Fig. 10,
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FIG. 11. Excitation gap ∆/J1 as function of the interaction
ratio J2/J1 for various magnetic fields h/J1 as obtained from
exact diagonalization for the Ns = 30 system. Solid (dashed)
lines are used to denote the excitation gap in the LM (MD)
regime.

we find that its location roughly matches the estimated
first-order transition line. The deviation that is visible in
the inset can be explained as follows: the form Eq. (20)
matches the exact expression Eq. (18) in the MD phase
whereas in the LM phase it neglects the dispersive na-
ture of the excitations above the gap ∆. Consequently,
the average excitation energy in the LM phase is effec-
tively larger than ∆, such that the transition line should
indeed bend further towards smaller J2.

The main panel of Fig. 12 shows the specific heat C
in the transition regime. Here, we observe two well pro-
nounced lines of maxima that expand out from the lo-
cation of the critical point, very similar to the behavior
observed previously in related systems [17, 39, 68].

To accurately locate the critical point, we performed
a finite-size scaling analysis for the fluctuations of the
mean singlet occupancy. More specifically, we consider
the corresponding singlet susceptibility [39],

χs =
β

4N

〈( 2N∑
d=1

nd

)2〉
−
〈

2N∑
d=1

nd

〉2
 . (21)

In the left panel of Fig. 13, we show this quantity for dif-
ferent system sizes at a fixed temperature T/J1 = 0.32
across the transition region. The data exhibit pro-
nounced maxima. Within the two-dimensional Ising uni-
versality of the critical point, the maximum value scales
as χmax

s ∝ L7/4 at criticality [39]. This property can be
used to extract the value of Tc from performing a finite-
size scaling analysis of the peak position, as shown in the
upper right panel of Fig. 13, giving Tc/J1 = 0.315(5).
From analyzing the corresponding values of J2/J1 of the
peak position, cf. the lower right panel of Fig. 13, we can
extract the critical coupling ratio (J2/J1)c = 2.4745(5)
as well. Together they give the estimated location of the
critical point already shown in Figs. 10 and 12.
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FIG. 12. Specific heat in the vicinity of the LM-MD transition
for h/J1 = 2.5 as obtained from QMC for the system size
with L = 4. The red line shows the first-order transition line
obtained from comparing the free energies of both phases,
extended up to the location of the critical point (symbol),
as extracted from a finite-size analysis of the QMC data (see
text for details). In the low-T region (white), the QMC data
exhibit large statistical fluctuations and have been cut off.
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FIG. 13. Left panel: Singlet susceptibility χs for a fixed
temperature T/J1 = 0.32 across the transition region for
h/J1 = 2.5 and for various system sizes as obtained from
QMC simulations. Right panel: finite-size scaling analysis of
the peak value and its positions to extract the location of the
critical point at h/J1 = 2.5.

We also performed a corresponding analysis at h/J1 =
2. Here, according to the excitation gaps shown in
Fig. 11, we expect the first-order line to bend to the
right instead. This is indeed confirmed by our analysis,
cf. the corresponding data for the specific heat shown in
Fig. 14. The small deviations that one can see in the
inset of Fig. 14 can be explained by the same argument
as in the case h/J1 = 2.5, i.e., neglecting the dispersive
nature of the excitations in the LM phase.

For the future, it would be interesting to investigate the
thermal properties of this model with respect to several
other aspects, such as (i) how the KT transition lines
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FIG. 14. Specific heat in the vicinity of the LM-MD transi-
tion for h/J1 = 2 as obtained from QMC for the system size
with L = 4. The red line shows the first-order transition line
obtained from comparing the free energies of both phases, ex-
tended up to the location of the critical point (symbol), as
extracted from a finite-size analysis of the QMC data (see
text for details). In the low-T region (white), the QMC data
exhibit large statistical fluctuations and have been cut off.

of the SC phase merge with the discontinuous quantum
phase transition between the SC and MD phases, and
(ii) how the thermal properties of the DT phase can be
quantitatively described by effective models of low-energy
excitations, similar to the lattice-gas model for the MD
phase. We hope that our investigations motivate further
research on these challenging topics in the future.

VII. CONCLUSIONS

In this article we considered the spin-1/2 Heisenberg
antiferromagnet on the diamond-decorated square lattice
in the presence of a finite magnetic field, using a combina-
tion of analytical arguments and exact diagonalization,
density matrix renormalization group, as well as sign-
problem free stochastic series expansion quantum Monte
Carlo simulations.

We identified the ground-state properties at finite mag-
netic field and mention here several aspects: (i) the
previously identified zero-field Lieb-Mattis (LM), dimer-
tetramer (DT) and monomer-dimer (MD) phases all ex-
tend to finite magnetic fields, with a magnetization 3/5,
0, and 1/5-plateau characterizing the LM, DT and MD
regime, respectively, (ii) at intermediate fields, the DT
phase vanishes and beyond this magnetic-field range,
a direct discontinuous quantum phase transition takes
place between the LM and MD phases, (iii) at high mag-
netic fields, in addition to the fully saturated paramag-
netic phase (PM), a spin-canted (SC) phase with (quasi)-
long-range order emerges.

Additionally, we showed that in the MD regime for
J2/J1 ≥ 4, the low-temperature thermodynamic proper-
ties can be well described in terms of a simple effective

0 1 2 3 4 5 6

h/J

0.0

0.2

0.4

0.6

0.8

1.0

θ/
π

φ1 − φd = π

θd/π

θ1/π

FIG. 15. Angles θ/π of the spins of the classical mixed-spin
Heisenberg model on the Lieb lattice as a function of the
magnetic field h/J at zero temperature.

lattice-gas model.
Motivated by related results in other quantum spin

models, we showed that the direct, discontinuous quan-
tum phase transition line between the LM and MD phase
extends up to finite temperature, ending in a line of crit-
ical points that belong to the two-dimensional Ising uni-
versality class. We furthermore demonstrated that the
slope of the transition line changes sign upon increasing
the strength of the magnetic field.

For the future it would certainly be interesting to ex-
tend this analysis to other phases such as the DT phase,
and furthermore to investigate its excitations in more de-
tail.
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Appendix A: Ground states of the classical mixed
spin-1 and spin-1/2 model on the Lieb lattice

In this appendix we consider a classical version of the
mixed spin-1 and spin-1/2 Heisenberg model in a mag-
netic field on the Lieb lattice. To this end we first note
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FIG. 16. Local magnetizationsM1 andMd of the two inequiv-
alent sites of the classical mixed-spin Heisenberg model on the
Lieb lattice as well as the total magnetization Mtot (normal-
ized by the saturated magnetization MS) as a function of the
magnetic field h/J at zero temperature.

that the quantum Hamiltonian can be written as a sum
of bond operators such that

H =

Nb∑
b=1

Hb =

Nb∑
b=1

J S1 · Sd −
h

4
Sz1 −

h

2
Szd , (A1)

where S1 and Sd denote the spin-1/2 and spin-1 sites re-
spectively and the sum runs over all bonds on the lattice.
For a classical description, we replace the quantum spins
by three-dimensional vectors of length 1/2 and 1, i.e.,

S1 →
1

2

sin θ1 cosφ1

sin θ1 sinφ1

cos θ1

 , Sd →

sin θd cosφd
sin θd sinφd

cos θd

 .

(A2)
The bond terms in the classical model are then given by

Hb =
J

2
(sin θ1 sin θd cos(φ1 − φd) + cos θ1 cos θd)

− h

2

(
1

4
cos(θ1) + cos(θd)

)
. (A3)

The ground state of the total classical model is ob-
tained upon minimizingHb with respect to all four angles
θ1, θd, φ1, φd. Since θ1 and θd are restricted between 0
and π, minimizing with respect to both φd and φ1 yields
φ1−φd = π, i.e., an antiferromagnetic alignment of neigh-
boring spins transverse to the field direction. This yields

Hb =
J

2
(− sin θ1 sin θd + cos θ1 cos θd)

− h

2

(
1

4
cos(θ1) + cos(θd)

)
. (A4)

Differentiating with respect to θ1 and θd gives the condi-
tions
∂Hb

∂θ1
=
J

2
(− cos θ1 sin θd − sin θ1 cos θd) +

h

8
sin θ1 = 0

(A5)
∂Hb

∂θd
=
J

2
(− sin θ1 cos θd − cos θ1 sin θd) +

h

2
sin θd = 0.

(A6)

Subtracting Eq. (A5) from Eq. (A6) yields the relation
sin θ1 = 4 sin θd which, when reinserted into Eq. (A5),
finally leads to(

h

8
− J

8
cos θ1 −

J

2

√
1− 1

16
sin2 θ1

)
sin θ1 = 0. (A7)

Based on Eq. (A7), one can identify three different
regimes, by requiring either factor to be zero, shown in
Fig. 15. We identify first a ferrimagnetic (FI) regime for
0 ≤ h/J ≤ 3, where the spins align in opposite directions
with θ1 = π and θd = 0, with a ground-state energy of

EFI/Nb = −J
2
− 3

8
h. (A8)

Next, we identify in the regime 3 ≤ h/J ≤ 5 a phase
in which the spin directions change continuously upon
varying the magnetic field, given by

cos θd=
J

8h

[(
h

J

)2

+15

]
, cos θ1=

J

2h

[(
h

J

)2

−15

]
.

(A9)

Here, the spins are canted with respect to the direc-
tion of the magnetic field, forming biconical structures
with the total magnetization Mtot/Ms = (1/2 cos θ1 +
2 cos θd)/(5/2) = h/(5J). Note that at small fields, S1 is
aligned in the opposite direction of the magnetic field.
Upon increasing the magnetic-field strength, however,
both spins align with the magnetic-field direction. Fi-
nally, we identify a fully saturated paramagnetic (PM)
phase, where all spins align in direction of the magnetic
field with θ1 = θd = 0 and a ground-state energy

EPM/Nb =
J

2
− 5

8
h. (A10)

Figure 16 shows the local magnetization of both sites
S1 and Sd as well as the (normalized) total magnetiza-
tion as a function of the magnetic field. We note that
this classical result is in good qualitative agreement with
the results obtained for the quantum model, where the
local magnetizations within the LM phase are slightly
suppressed compared to their saturated values due to
quantum fluctuations.

Appendix B: Determination of the KT transition

In this appendix, we detail the determination of the
KT transition temperature TKT within the SC phase. A
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FIG. 17. Spin stiffness ρS for different system sizes L as
a function of temperature T/J1 for the diamond-decorated
square lattice model at J2/J1 = 0 and h/J1 = 4.5. The
dashed line denotes the scaling form of the universal jump.
The inset shows the quantity A(T ) from the finite-size scaling
analysis. The KT transition temperature is denoted by the
dashed vertical line, where A(T ) = 1 holds, obtained using a
linear fit (solid line).

standard means of identifying TKT in O(2)-symmetric
systems is based on the behavior of the spin stiffness
ρS , which is predicted to exhibit a universal jump of
ρS = 2TKT/π at TKT [81]. Within the SSE QMC ap-

proach, ρS can be calculated from the spin winding num-
ber fluctuations [82–84]

ρS =
T

2Auc

(
〈W 2

x 〉+ 〈W 2
y 〉
)
, (B1)

where Wx and Wy are the total winding numbers in the
orthogonal x and y direction, respectively. Here Auc is
the unit cell area of the underlying Bravais lattice. For
the diamond-decorated square lattice, Auc = 1 holds. To
extract TKT from finite-size QMC data, we follow the
standard approach of Ref. [79], which is based on the
finite-size scaling form [78]

ρS π

2T
= A(T )

(
1 +

1

2 log(L/L0(T ))

)
(B2)

that holds exactly at the transition point with A(TKT) =
1. We fitted this finite-size dependence to the data for
different temperatures, using A(T ) and L0(T ) as fit pa-
rameters. This allows us to accurately estimate TKT,
where A(TKT) = 1 holds. Our results from this approach
are shown in Fig. 17, and we obtain from this analysis
an estimate of TKT/J = 0.08248(3) at J2/J1 = 0 and
h/J1 = 4.5. Performing the same analysis at different
ratios of J2/J1 within the SC phase for h/J1 = 4.5, we
obtain similar values for the KT transition temperature.
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