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Absence of magnetic order for the spin-half Heisenberg antiferromagnet on the star

lattice

J. Richter,1 J. Schulenburg,2 A. Honecker,3 and D. Schmalfuß1

1Institut für Theoretische Physik, Universität Magdeburg, P.O. Box 4120, D-39016 Magdeburg, Germany
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We study the ground-state properties of the spin-half Heisenberg antiferromagnet on the two-
dimensional star lattice by spin-wave theory, exact diagonalization and a variational mean-field
approach. We find evidence that the star lattice is (besides the kagomé lattice) a second candi-
date among the 11 uniform Archimedean lattices where quantum fluctuations in combination with
frustration lead to a quantum paramagnetic ground state. Although the classical ground state of
the Heisenberg antiferromagnet on the star lattice exhibits a huge non-trivial degeneracy like on
the kagomé lattice, its quantum ground state is most likely dimerized with a gap to all excitations.
Finally, we find several candidates for plateaux in the magnetization curve as well as a macroscopic
magnetization jump to saturation due to independent localized magnon states.

PACS numbers: 75.10.Jm; 75.45.+j; 75.60.Ej; 75.50.Ee

I. INTRODUCTION

The spin-half two-dimensional (2D) Heisenberg anti-
ferromagnet (HAFM) has attracted much attention in
recent times. In particular, the recent progress in syn-
thesizing novel quasi-2D magnetic materials exhibiting
exciting quantum effects has stimulated much theoreti-
cal work. We mention for example the spin-gap behav-
ior in CaV4O9

1 and in SrCu2(BO3)2,
2 the spin fraction-

alization in Cs2CuCl4
3 or the plateau structure in the

magnetization process of frustrated quasi-2D magnetic
materials like SrCu2(BO3)2

2 or Cs2CuBr4.
4

While the ground state (GS) of the one-dimensional
quantum HAFM does not possess Néel long-range or-
der, for the spin-half HAFM on 2D lattices the com-
petition between quantum fluctuations and interactions
seems to be well balanced and magnetically ordered and
disordered GS phases may appear. A fine tuning of this
competition may lead to zero temperature transitions be-
tween semi-classical and quantum phases. The proto-
types of 2D arrangements of spins are the 11 uniform
Archimedean lattices (tilings), see, e.g. Refs. 5–7. They
present an ideal possibility for a systematic study of the
interplay of lattice geometry and magnetic interactions
in 2D quantum spin systems.

The HAFM on the widely known square, honeycomb,
triangular and kagomé lattices has been studied in nu-
merous papers over the last decade. While for the square,
honeycomb and triangular lattices the existence of semi-
classical magnetic order seems to be well-established (see
e.g. Refs. 7–9) the spin-half HAFM on the kagomé lat-
tice is a candidate for a magnetic system with a quantum
paramagnetic GS (see the reviews 7–10 and references
therein). Other less known Archimedean lattices like the
maple-leaf lattice,11 the square-hexagonal-dodecagonal
lattice12,13 and the trellis lattice14,15 exhibit most likely
semi-classical magnetic GS order.
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FIG. 1: The star lattice with N = 42 sites.

In this paper we present another candidate for a quan-
tum paramagnetic GS among the Archimedean lattices,
namely the so-called star lattice, featured by low coor-
dination number z = 3 and strong frustration due to a
triangular arrangement of bonds (see Fig. 1).

II. MODEL

The geometric unit cell of the star lattice contains six
sites and the underlying Bravais lattice is a triangular
one (see Figs. 1 and 2). For this lattice we consider the
spin-half HAFM in a magnetic field h

Ĥ = J
∑

〈ij〉
Si · Sj − hŜz, (1)

where the sum runs over pairs of neighboring sites 〈ij〉
and Ŝz =

∑

i Ŝz
i . The star lattice carries topologically

inequivalent nearest-neighbor (NN) bonds JD (dimer
bonds, solid lines in Fig. 1) and JT (triangular bonds,
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FIG. 2: (Color online) Two variants of the GS of the classical
HAFM on the star lattice: the

√
3×

√
3 state (left) and the

q=0 state (right). The dotted ellipses show further degrees
of freedom of the highly degenerate classical GS. Different
shades of the triangles symbolize different chiralities.

dashed lines in Fig. 1, see also Fig. 2). For the uniform
lattice these bonds are of equal strength JD = JT = J .

III. SEMI-CLASSICAL GROUND STATE

In the classical GS for h = 0 the two non-equivalent
NN bonds of the star lattice carry different NN spin cor-
relations: The angle between neighboring spins on dimer
bonds JD is π, whereas the angle on triangular bonds JT

is 2π/3. Its energy per bond is eclass
0 = −1/6. The classi-

cal GS for the star lattice has a great similarity to that of
the kagomé lattice. It also exhibits a non-trivial infinite
degeneracy. Moreover, there are also the two variants of
the classical GS, namely the so-called

√
3×

√
3 and q = 0

states (see Fig. 2), often used for discussing possible or-
der in the kagomé lattice. Hence these two particular
planar states can also be considered as variants of possi-
ble GS ordering for the star lattice. In the following we
discuss the influence of quantum fluctuations on the GS
properties.

First, we perform a linear spin-wave theory (LSWT)
starting from the planar classical GSs. The LSWT for
the star lattice is more ambitious than for the kagomé lat-
tice, since we have to consider six types of magnons. As
in the kagomé case16–18 the spin-wave spectra are equiva-
lent for all coplanar configurations satisfying the classical
GS constraint. We obtain six spin-wave branches. Two
dispersionless modes are found, namely ω1q = 0, ω2q =

Js
√

3. Thus also a flat zero-mode appears as it is ob-
served for the kagomé case. In addition there are two
acoustical and two optical branches. There is no order-

by-disorder selection among the coplanar classical GSs
due to the equivalence of the spin-wave branches obtained
from LSWT, exactly like for the kagomé lattice.10,17

The GS energy per bond for s = 1/2 in LSWT is
e0/J = −0.296759. Due to the flat zero mode the in-

tegral for the sublattice magnetization diverges18 which
might be understood as another hint for the absence of
the classical order. Although on the semi-classical LSWT
level both the kagomé and the star lattice exhibit almost
identical properties, the situation might be changed tak-
ing into account the quantum fluctuations more properly.

IV. LANCZOS EXACT DIAGONALIZATION

We consider now the extreme quantum limit s = 1/2
by direct numerical calculation of the GS and the low-
lying excitations at h = 0 for finite lattices of N =
18, 24, 30, 36, 42 sites. For each size N we have cho-
sen only lattices having good geometric properties us-
ing the criteria given in Ref. 19. The largest lattice
(N = 42) is shown in Fig. 1 and required a Lanczos
diagonalization in dimension 801 258 898 for the compu-
tation of GS properties. The GS for all these lattices is
a singlet and has an energy per bond e0 = −0.312479
(N = 18); −0.311342 (24); −0.310808 (30); −0.310348
(36A); −0.310657 (36B); −0.309918 (42). The first exci-
tation is a triplet and has a gap ∆ = 0.578710 (N = 18);
0.531822 (24); 0.498564 (30); 0.480343 (36A); 0.483112
(36B) (no result available for N = 42).

We present in Table I the spin-spin correlation for the
largest finite lattice considered. Note that the two non-
equivalent NN correlation functions differ drastically, we
have 〈Ŝz

0 Ŝz
28〉 ∼ 3.5〈Ŝz

0 Ŝz
1 〉 indicating a tendency to form

local singlets on the dimer bonds.
Let us compare the spin correlations with those for the

HAFM on triangular and kagomé lattices. We consider
the strongest correlations as a measure for magnetic order
and present in Fig. 3 the maximal absolute correlations
|〈Ŝz

0 Ŝz
i 〉|max for a certain separation R = |R0−Ri| versus

R. As expected we have very rapidly decaying correla-
tions for the disordered kagomé case, whereas the corre-
lations for the Néel ordered triangular lattice are much
stronger for larger distances and show a kind of satura-
tion for larger R. Although the correlations for the star
lattice are slightly larger than those of the kagomé lattice
they are significantly weaker for separations R ≥ 3 than

TABLE I: All non-equivalent GS spin-spin correlations
〈Ŝz

0 Ŝz

i 〉 = 1

3
〈S0Si〉 for the HAFM on the star lattice with

N = 42 sites. In addition to the site index i we give the sep-
aration R = |R0 − Ri| between sites 0 and i in units of NN
separation.

i (R) 1 (1) 3 (1.932) 4 (2.909)

〈Ŝz

0 Ŝz

i 〉 −0.05643 0.03559 −0.01058

i (R) 6 (3.732) 7 (3.346) 9 (5.278)

〈Ŝz

0 Ŝz

i 〉 −0.00451 0.01066 0.00439

i (R) 10 (4.625) 26 (2.732) 28 (1)

〈Ŝz

0 Ŝz

i 〉 −0.01173 −0.03875 −0.19707
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FIG. 3: Maximal spin-spin correlation |〈Ŝz

0 Ŝz

i 〉|max versus sep-
aration R = |R0 − Ri| for the star lattice (N = 42), the
kagomé (N = 36) and the triangular lattice (N = 36) (the
lines are guides for the eyes). The data for the kagomé lattice
coincide with those from Ref. 20.

those of the triangular lattice. The large NN correlation
for the star lattice corresponds to a NN dimer bond.

Next we consider the low-lying spectrum of the star
lattice (see Fig. 4), following the lines of the discus-
sion of the spectrum for the triangular21 and the kagomé
lattice.22,23 It is obvious that the lowest states Emin(S)
are not well described by the effective low-energy Hamil-
tonian Heff ∼ E0 + S

2/2Nχ0 of a semi-classically or-
dered system: (i) The Emin versus S(S + 1) curve devi-
ates significantly from a straight line (cf. the dashed line
in Fig. 4). (ii) We do not see well separated lowest states
in the different sectors of S (so-called quasi degenerate
joint states21) which could collapse onto a Néel-like state
in the thermodynamic limit. (iii) The symmetries of the
lowest states in each sector of S cannot be attributed
to the classical

√
3×

√
3 or q=0 GSs in general. These

features are similar to the kagomé lattice.22,23 However,
there is one striking difference. In contrast to the kagomé
lattice we do not have non-magnetic singlets filling the
singlet-triplet gap (spin gap) commonly interpreted as a
remnant of the huge classical GS degeneracy. Rather we
have a particularly large singlet-singlet gap. This basic
difference to the kagomé lattice can be attributed to the
special property of the quantum GS of the star lattice
to have strongly enhanced antiferromagnetic correlations
on the JD bonds. As a consequence the quantum GS of
the star lattice has an exceptionally low GS energy e0

(see Table II) and is well separated from all excitations.
For finite systems the order parameter is based on the

spin-spin correlation functions. For systems with well-
defined semi-classical long-range order usually the square
of the staggered magnetization is used. However, this
definition of the order parameter is problematic in the
present situation: due to the huge non-trivial degeneracy
of the classical GS it remains unclear which type of order-
ing might be favored in the quantum system. Therefore

-11.5
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-9.5
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S(S+1)

E

N=36

FIG. 4: Low-energy spectrum for the HAFM on the star lat-
tice (N = 36B) (the inset shows the k points in the Brillouin
zone).

we use a definition of an order parameter

m+ =
( 1

N2

∑

i,j

|〈SiSj〉|
)1/2

(2)

which is independent of any assumption on classical
order.7 For bipartite systems like the square lattice this
definition is identical to the staggered magnetization m̄
and for the HAFM on the triangular lattice (m+)2 is by
1/3 larger than the usual definition.7 For the two planar

classical
√

3×
√

3 and q=0 GSs we get m+

class,
√

3×
√

3
=

m+
class,q=0 = 1

2

√

2/3 ≈ 0.40825 (note that for the kagomé

lattice one obtains the same value). For the quantum
model one finds (m+)2 = 0.149113 (N = 18); 0.114822
(24); 0.094831 (30); 0.082299 (36A); 0.079351 (36B);
0.073251 (42). For comparison we quote the values for
the N = 36 kagomé lattice: (m+)2 = 0.059128, and the
N = 36 triangular lattice: (m+)2 = 0.124802.

We have performed finite-size extrapolations based on
the standard formulas for 2D spin-half Heisenberg anti-
ferromagnets (see, e.g. Refs. 7,24,25), namely e0(L) =
A0 + A3

L3 +O(L−4) for the GS energy per bond, m+(L) =

B0 + B1

L +O(L−2) for the order parameter, and ∆(L) =

G0 + G2

L2 + O(L−3) for the spin gap, where A0 = e0(∞),

TABLE II: Results of the finite-size extrapolation of the GS
energy per bond e0 and the order parameter m+ (eq. (2))
of the spin-half HAFM for the star (N = 18, 24, 30, 36, 42),
the kagomé (N = 12, 18, 24, 30, 36) and the triangular (N =
24, 30, 36) lattices. To see the effect of quantum fluctuations
we scale m+ by its corresponding classical value m+

class
.

lattice triangular kagomé star

e0 −0.1842 −0.2172 −0.3091

m+/m+

class
0.386 0.000 0.122
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B0 = m+(∞), G0 = ∆(∞) and L = N1/2. We present
the results of the extrapolation for e0 and m+ in compar-
ison with the triangular and the kagomé lattice in Table
II. The HAFM on the star lattice has lowest GS energy
e0; the extrapolated order parameter is finite but very
small.

Fig. 5 shows the finite-size behavior of the spin gap
of the star lattice in comparison to the kagomé and tri-
angular lattices. We extrapolate a quite big spin gap
∆ = 0.380 for the star lattice. For the triangular lat-
tice, the data with N ≤ 36 seem to suggest a finite spin
gap which is, however, spurious. This illustrates that the
extrapolation of the spin gap may be most affected by
systematic errors.7 Nevertheless, the spin gap of the star
lattice in Fig. 5 exhibits only comparably small finite-
size effects. Hence, the estimation of a non-zero spin
gap for the star lattice seems to be reliable. The spin
gap extrapolated for the kagomé lattice8 is more than
six times smaller, but note that the existence of a gap
for the kagomé lattice at all is not fully clear, as is also
evident from Fig. 5.

V. VARIATIONAL MEAN FIELD APPROACH

We discuss briefly a variational approach which was
successfully applied to describe a quantum phase transi-
tion between Néel phases and a dimer phase.7,26,27 Let
us consider a model with different NN bonds JT and JD.
The GS shall be approximately described by a variational
wave function

|Ψ〉 =
∏

α

|φi
+(θα)〉|φj

−(θα)〉 − t|φi
−(θα)〉|φj

+(θα)〉√
1 + t2

(3)
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FIG. 6: Magnetization curves for star lattices with N = 18,
36A and 36B (complete) and N = 42, 54 and 72 (partial).
Inset: High-field part of the magnetization curves for N =
36A, 36B, 54 and 72 sites.

where α represents a pair of sites i, j corresponding to
a JD bond. Thus the product in (3) is effectively taken
over all JD bonds of the star lattice. In (3) the vec-
tors |φi

±(θα)〉 are spin up (down) states at site i with a
quantization axis corresponding to the classical planar
GS considered, i.e. [sin(θα)Ŝx

i + cos(θα)Ŝz
i ]|φi

±(θα)〉 =

± 1
2
|φi

±(θα)〉, where the angles θα correspond to the re-

spective classical
√

3×
√

3 or q=0 state. |Ψ〉 depends
on the variational parameter t and interpolates between
a rotationally invariant dimer product state for t = 1
and an uncorrelated planar

√
3×

√
3 or q=0 state for

t = 0. Optimizing 〈Ψ|Ĥ |Ψ〉 with respect to t we get
Evar

0 /bond = −(J2
D + JDJT + J2

T )/12JT . For the sublat-
tice magnetization we obtain

M = 〈Ψ| cos(θα)Ŝz
i + sin(θα)Ŝx

i |Ψ〉 =

√

J2
T − J2

D

2JT
(4)

for JD ≤ JT . M vanishes with a mean-field critical ex-
ponent at the symmetric point JD = JT . Since such an
approach tends to overestimate the region of the semi-
classically ordered state,26,27 we may interpret the above
result as a further indication of a dimerized GS.

VI. MAGNETIZATION PROCESS

Finally, Fig. 6 shows magnetization curves of several
finite star lattices, where the magnetization m is defined
as m = 2〈Ŝz〉/N . Due to computational limitations, only
the high-field region can be studied for N > 36. For ex-
ample for N = 42, reliable data are available only for
m ≥ 1/3 (and of course m = 0, see section IV). Fur-
thermore, the lowest parts of the curves for N = 54
(17/27 ≤ m < 19/27) and N = 72 (3/4 ≤ m < 5/6)
are based on assumptions concerning the symmetry of
the GS.
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First, one observes a pronounced zero-field plateau in
Fig. 6 corresponding to the spin gap discussed in section
IV. Candidates for further plateaux emerge e.g. at m =
1/3, 7/9 and 8/9. The finite-size effects at the boundaries
of these candidate plateaux are comparably weak for m =
7/9 (see inset of Fig. 6) such that the numerical evidence
in favor of a plateau with m 6= 0 is strongest in this case.

The presence of a plateau at m = 1/3 is also plau-
sible since the star lattice consists of triangles. More
precisely, Ising-like anisotropies can be argued to give
rise to a plateau at m = 1/3 due to up-up-down con-
figurations on the triangles. The number Nconf. of such
Ising configurations can be determined by explicit enu-
meration, yielding e.g. Nconf. = 123 528, 3 508 392, and
531 606 684 for the N =42, 54, and 72 lattices, respec-
tively. This number grows asymptotically approximately
as Nconf. ∝ (1.322 . . .)N . The number of Ising configu-
rations is much bigger than the corresponding number
on the kagomé lattice at m = 1/3 (see Ref. 28 and ref-
erences therein), indicating that the tendency towards a
disordered GS at m = 1/3 may be stronger on the star
lattice than on the kagomé lattice.

Just below saturation, we see a jump in the magne-
tization curve (see inset of Fig. 6). Indeed, the pres-
ence of this jump follows from a general construction
of independent localized magnons for strongly frustrated
lattices,7,29 which in the case of the star lattice live on the
dodecagons. The expected height δm = 1/9 of the jump
for sufficiently large N is confirmed for N = 54 and 72
(see inset of Fig. 6). Note that the existence of localized
magnon states also leads to a finite residual T = 0 en-
tropy at the saturation field h = 5J/27,30 and may favor
a tendency towards a spin-Peierls deformation.31 On gen-
eral grounds one expects a plateau just below the jump,
i.e. at the candidate value m = 8/9 mentioned before,7

although the available data do not allow unambiguous
confirmation of this plateau.

VII. DISCUSSION AND CONCLUSION

Similar as for the kagomé lattice the results reported in
this paper yield indications for a quantum paramagnetic
GS for the star lattice, too. Whereas this statement is
well-known for the kagomé lattice, the star lattice repre-
sents a new example for a quantum HAFM on a uniform
2D lattice without semi-classical GS ordering. However,
we emphasize that despite the fact that on the classi-
cal and semi-classical level (LSWT) we have very similar
physics as for the kagomé lattice (i.e. one zero mode, the
classical GS degeneracy is not lifted) the quantum para-
magnetic GS for the star lattice is of different nature

than that for the kagomé lattice. The quantum GS for
the star lattice is characterized by extremely strong NN
correlation on the dimer bonds (more than 60% larger
than the NN correlation of the honeycomb lattice having
the same coordination number z = 3) and a weak NN
correlation on the triangular bonds (only about 30% of
the NN dimer correlation and significantly less than the
triangular NN correlation of the kagomé and the triangu-
lar lattices). The singlet-triplet spin gap is particularly
large (about six times larger than that for the kagomé
lattice). Although the classical GS exhibits a huge non-
trivial degeneracy remarkably one does not find low-lying
singlets within this large spin gap, rather the first sin-
glet excitation is well above the lowest triplet state. The
low-lying spectrum as a whole resembles the spectrum of
weakly coupled dimers.6 All these features support the
conclusion that the quantum GS of the HAFM on the
star lattice is dominated by local singlet pairing. This
dimerized GS represents a so-called explicit valence-bond

crystal state,8 which respects the lattice symmetry.
Although we could expect a gapped quantum paramag-

netic explicit valence-bond crystal GS for the star lattice
in case of strong dimer bonds JD ≫ JT , this should be
contrasted with other models where an explicit valence-
bond crystal GS arises in the limit of strong dimer bonds.
For example, in the simple s = 1/2 Heisenberg bilayer
model, the picture of weakly coupled dimers is qualita-
tively correct only for an interlayer exchange coupling
J⊥ significantly larger than the intralayer coupling J
(J⊥ & 2.5J , see Refs. 26,32 and references therein). Be-
cause the bilayer Heisenberg model is not frustrated, the
classical GS does not exhibit any non-trivial degener-
acy and the GS remains the semi-classical Néel state for
J⊥ ≈ J and all values of s.32 By contrast, the quan-
tum paramagnetic GS appears in the s = 1/2 star lattice
even in the uniform case JD = JT . This difference can
be attributed to the strong frustration present in the star
lattice.

The magnetization curve of the s = 1/2 HAFM on the
star lattice shows a jump just below saturation and sev-
eral candidates for plateaux e.g. at m = 1/3, 7/9 and
8/9 as some typical features of strongly frustrated quan-
tum spin lattices. Furthermore, low-energy excitations
present for certain magnetic fields promise large magne-
tocaloric effects.30
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