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This is a very short summary of the main results of refs. [1−3]. A slightly longer summary but with
different emphasis can be found in [4]. The results reported here were obtained in collaboration
with R. Blumenhagen, W. Eholzer, K. Hornfeck and R. Hübel.

One of the main aims of explicit constructions of quantumW-algebras was to gain some insight into
the structure of quantumW-algebras and the associated rational conformal field theories (RCFTs).
The rational models of those W-algebras existing for isolated c only can be either interpreted
as extensions or truncations of W-algebras obtained by Drinfeld-Sokolov (DS) reduction, or the
effective central charge is integer (see [5] for a summary). However, among theW-algebras existing
for generic c two algebras of types W(2, 4, 6) and W(2, 3, 4, 5) were unexplained for some time
(see e.g. [5] for a description of the problem). These two algebras were finally explained by
studying generic classical reduction methods [6] which in turn lead to the emergence of ‘unifying
W-algebras’. Although many interesting results can be obtained studying classical W-algebras,
the concept of unifying W-algebras can be explained from a purely quantum point of view.

The Kac determinant can be used to predict truncations of Casimir W-algebras. The Kac deter-
minant of the vacuum Verma module MN at level N related to WLk is given by [7]:

detMN ∼
∏
β∈∆

∏
mn≤N

m,n∈N

(
(α+ρ + α−ρ∨, β) + ( 1

2 (β, β)mα+ + nα−)
)pk(N−mn) (1)

where pk(x) is the number of partitions of x into k colours. α+ and α− are related to the central
charge. For degenerate values of the central charge they can be parametrized by α+ = q√

pq ,
α− = − p√

pq . The integers p and q are related to the central charge by

cLk
(p, q) = k − 12

(q ρ− p ρ∨)2

pq
. (2)

Equating one of the non-descendent factors of (1) to zero leads to (α+ρ+α−ρ∨, β)+
(

1
2 (β, β)mα++

nα−
)

= 0. Truncations can be expected for solutions to this equation such that N = mn is as
small as possible with a suitable root β. The result of this computation suggests that there should
be truncations for m = p− h∨ + 1, n = q − h + 1. This means that Casimir W-algebras truncate
to algebras of fixed field content for their minimal models if the integers p and q are chosen at
a fixed offset with respect to the (dual) Coxeter number. A more explicit desciption of this fact
is obtained after inserting the coxeter number h and dual coxeter number h∨ – compare Table 1
of [1].
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This gives rise to the structure indicated for the Casimir W-algebras WAn in the figure below.
The horizontal lines correspond to the algebras WAn that exist for generic central charge c. For
the kth unitary minimal model all generators of WAn with dimension greater than k2 + 3k + 1
become null fields leading to a truncation of WAn to an algebra of type W(2, . . . , k2 + 3k + 1) for
all sufficiently large n. One can interpolate these truncations at fixed k to non-integer n giving
rise to a new W-algebra existing for generic c – a ‘unifying W-algebra’. In general, unifying W-
algebras exist for generic c and can be thought of as continuations of Casimir W-algebras WLn

to real values of the rank n for certain values of the central charge. Usually, unifying W-algebras
are non-freely generated.
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Also negative dimensional groups are related to unifying W-algebras. From the theory of repre-
sentations of classical groups it is known that e.g. SU(−n) can be formally related to SU(n) and
SO(−2n) to Sp(2n). These relations hold for representations where e.g. the dimension formula of
one algebra can be obtained by that with the transposed Young tableaux for the other algebra [8]
and the Casimir operators are formally equal upon interchanging symmetrization and antisym-
metrization [9]. Equating the central charges of the Sugawara energy-momentum tensors for the
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corresponding Kac-Moody algebras one obtains the following identifications:̂sl(−n)k := ŝl(n)−k , ̂so(−2n)k := ̂sp(2n)− k
2

. (3)

This leads to the following coset realizations for ‘Casimir’ W-algebras with negative rank [2, 3]:

WA−n−1
∼=

ŝl(n)k ⊕ ŝl(n)−1

ŝl(n)k−1

∼= W(2, 3, . . . , (n + 1)2 − 1) ,

WD−k
∼=

̂sp(2k)κ ⊕ ̂sp(2k)− 1
2̂sp(2k)κ− 1

2

∼= W(2, 4, . . . , 2k(k + 2)) .

(4)

BothWA−n−1 andWD−k have generic null fields – the lowest one forWD−k occurs at dimension
2k2 + 4k + 5. These algebras appear as unifying W-algebras, e.g. WD−k

∼= WCn at cCn(n + k +
1, 2n + 2k + 1).

Many unifying W-algebras can be given a coset realization. For example, level-rank duality sug-
gests that [10, 11]

WAn−1
∼=

ŝl(n)k ⊕ ŝl(n)1
ŝl(n)k+1

∼=
̂sl(k + 1)n

ŝl(k)n ⊕ Û(1)
= CP(k) . (5)

Since there are claims to the contrary in the literature, we would like to emphasize that the coset
realization ŝl(2)n/Û(1) for the unifying W-algebra for the first minimal models of WAn−1 (the
Zn parafermions) is a finitely generated algebra of type W(2, 3, 4, 5). Eq. (5) can be generalized
to

WAn−1
∼=

Wsl(r)

r−k,1k

ŝl(k)⊕ Û(1)
∼= W(2, 3, . . . , (k + 1)r + k) at cAn−1(n + k, n + r) (6)

with two generic null fields at dimension (k + 1)r + k + 3. The algebra Wsl(r)

r−k,1k in eq. (6)
arises by DS reduction for the principal embedding of sl(2) into sl(r − k) ⊂ sl(r) and is of type
W(1k2

, 2, 3, . . . , r − k,
(

r−k+1
2

)2k
). The k2 currents of Wsl(r)

r−k,1k form a ŝl(k) ⊕ Û(1) Kac-Moody
algebra. Eq. (6) gives a coset realization for all unifying W-algebras related to minimal models of
WAn−1. Some unifying W-algebras for WCn can be interpreted as WD−k which have the coset
realization (4). Also the unfiying W-algebras for certain minimal models of WDn and WBn can
be given a coset realization – see Table 7 of [2] for a complete list of known coset realizations.

The coset realizations of unifying W-algebras agree with level-rank duality where applicable. It
is also easily checked that the central charges map nicely onto each other. Furthermore, in some
cases equality of structure constants has been checked. One can also check equality of minimal
models in those cases where they are known on both sides. Further evidence can be obtained from
character computations.

Also the truncations of linear W∞ algebras can be nicely fitted in this picture observing that (see
also [12])

W∞ ∼= lim
n→∞

WAn−1 , W1+∞ ∼= lim
k→∞

Û(1)⊕ CP(k) = lim
k→∞

̂sl(k + 1)n

ŝl(k)n

. (7)
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For positive integer c = n the algebra W1+∞ truncates to Wgl(n)
n

∼= Û(1)⊕WAn−1 [13] which is
a unifying W-algebra for Û(1)⊕ CP(k). Thus, these truncations can be recovered from the right
border of the above picture. Also the truncations of W1+∞ at negative integer c = −n [14] can
be understood in a similar manner, one simply needs the algebras WA−n that we have discussed
before.

One can even define [3] ‘universal W-algebras’ that depend on two parameters (e.g. k and n) and
include all minimal models of a family of Casimir W-algebras. This is so because the above figure
is densely covered by unifying W-algebras such that one can continue WAn to real n for all k.
For generic irrational k 6∈ Q this universal W-algebra will have infinitely many generators.

To summarize, the space of allW-algebras gives rise to complicated structures including a ‘unifying
structure’. However, there are indications [2] that the only rational models of unifying W-algebras
are located at intersection points with the Casimir W-algebras. This implies that unifying W-
algebras might not give rise to new RCFTs, and that the classification problem of RCFTs (which
is far from being solved) could in fact be simpler than a classification of W-algebras. One might
hope that (super-symmetric) quantized DS exhausts all possible RCFTs (with exceptions at (half-)
integer effective central charge). The concept of unifying W-algebras could still be useful because
on the one hand they might lead to conceptual simplifications and on the other hand not all
physical phenomena are necessarily described by RCFTs. This applies in particular to string
theories and indeed examples for N = 2 supersymmetric unifyingW-algebras have been found [15].
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