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Thermal conductivity of anisotropic and frustrated spin-1=2 chains
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We analyze the thermal conductivity of anisotropic and frustrated spin-1=2 chains using analytical

and numerical techniques. This includes mean-�eld theory based on the Jordan-Wigner transfor-

mation, bosonization, and exact diagonalization of systems with N � 18 sites. We present results

for the temperature dependence of the zero-frequency weight of the conductivity for several values

of the anisotropy �. In the gapless regime, we show that the mean-�eld theory compares well to

known results and that the low-temperature limit is correctly described by bosonization. In the

antiferromagnetic and ferromagnetic gapped regime, we analyze the temperature dependence of the

thermal conductivity numerically. The convergence of the �nite-size data is remarkably good in the

ferromagnetic case. Finally, we apply our numerical method and mean-�eld theory to the frustrated

chain where we �nd a good agreement of these two approaches on �nite systems. Our numerical

data do not yield evidence for a diverging thermal conductivity in the thermodynamic limit in case

of the antiferromagnetic gapped regime of the frustrated chain.

Introduction - Transport properties of low-

dimensional spin systems have attracted recently inter-

est both from the experimental and theoretical side. A

particular motivation comes from the observation that

magnetic excitations of one-dimensional spin systems sig-

ni�cantly contribute to the thermal conductivity which

is manifest in many experiments on materials such as

the spin-ladder system

1{3

(Sr,La,Ca)

14

Cu

24

O

41

and the

spin-chain compounds SrCuO

2

and Sr

2

CuO

3

4

. Assum-

ing elementary excitations to carry the thermal current

and using a relaxation time ansatz for their kinetic equa-

tion one �nds extremely large mean-free paths being, for

example, of the order of 1000

�

A in La

5

Ca

9

Cu

24

O

41

2

. Al-

though the magnitude of the mean-free path is currently

an issue of intense discussion, the question arises whether

heat transport in low-dimensional spin systems is bal-

listic, i.e., whether intrinsic scattering of magnetic ex-

citations is ine�ective to render the thermal conductiv-

ity �nite. From the theoretical point of view this issue

is related to the value of the so-called (thermal) Drude

weight

5

D

th

which is the zero-frequency weight of the

thermal conductivity �. A nonzero value of D

th

corre-

sponds to a diverging thermal conductivity. This sce-

nario is trivially realized if the energy-current operator

is a conserved quantity, which is the case for the spin-

1=2 Heisenberg chain

5,6

. For a number of other models

like the frustrated chain, the dimerized chains or the spin

ladder the energy-current operator is not conserved and

the question of nonzero D

th

is a challenging topic.

In this paper, we establish various numerical and an-

alytical techniques to analyze the thermal Drude weight

and to compute the temperature dependence of D

th

(T ).

We study the model Hamiltonian H =

P

l

h

l

with the

local energy-density given by

h

l

= Jf(S

+

l

S

�

l+1

+H.c.)=2+�S

z

l

S

z

l+1

+�

~

S

l

�

~

S

l+2

g: (1)

The XXZ model (� = 0) is integrable whereas for

nonzero frustration the model becomes nonintegrable.

Recently, Kl�umper and Sakai

7

obtained D

th

(T ) for � = 0

and 0 � � � 1 by using the Bethe ansatz

8

which allows

us to test our approaches in this regime. Exact diagonal-

ization of �nite systems up to N = 14 sites has been ap-

plied by Alvarez and Gros

9

to investigate D

th

(T ) for the

isotropic Heisenberg chain (i.e., � = 1), the frustrated

chain, and the spin ladder. Our numerical analysis goes

beyond this by allowing � 6= 1 and extension to larger

systems with N � 18 sites.

Thermal conductivity - The thermal conductivity

� is de�ned by hji = ��rT and is given by the following

expression

10

:

�(!) = �

Z

1

0

dt e

�i!t

Z

�

0

d�hj(�t � i�)ji: (2)

j is the energy-current operator

11

and � = 1=T is the

inverse temperature. The current operator satis�es the

equation of continuity: @

t

h

l

= i[H;h

l

] = �(j

l+1

�j

l

). For

exchange interaction of arbitrary range, i.e., [h

l�m

; h

l

] 6=

0 for m � m

0

, this implies

j

l

= i

m

0

�1

X

m;n=0

[h

l�m�1

; h

l+n

]: (3)

In our case we have m

0

= 2 (see Eq. (1)) leading to

j =

X

l

j

l

= i

X

l

[h

l�2

+ h

l�1

; h

l

+ h

l+1

]: (4)

Note that the current operator derived from Eq. (4) in-

cludes the proper limiting form for � � 1 where one

recovers the current operators of two decoupled chains.

The conductivity �(!) may be decomposed according

to Re�(!) = D

th

(T ) �(!) + �

reg

(!) into a singular part

at zero frequency and a regular part �

reg

(!). The quan-

tity of interest is the thermal Drude weight D

th

(T ) which
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FIG. 1: D

th

(T ) for di�erent values of the anisotropy � =

1; 0:5; 0 (top to bottom) and zero frustration. Dashed lines de-

note results obtained by Jordan-Wigner transformation and

mean-�eld treatment of the interaction term. Bethe-ansatz

results from Ref. 7 are included in the �gure (thick solid

lines). Thin dashed lines show the exact result for the low-

temperature limit (see Eq. (9)).

can be computed via (see, e.g., Ref. 5)

D

th

(T ) =

��

2

Z N

X

m;n

E

m

=E

n

e

��E

m

jhmjjjnij

2

: (5)

Z is the partition function and N the number of lattice

sites. Note that we exclusively use periodic boundary

conditions. If j is a conserved quantity, the conductivity

reduces to �(!) = D

th

(T )�(!) and expression (5) simpli-

�es to D

th

= ��

2

hj

2

i=N .

Mean-�eld theory - Using a Jordan-Wigner

transformation

10

the spin operators are mapped to spin-

less fermionic operators c

(y)

l

. In the case of � = 0 and

zero frustration � the corresponding Hamiltonian is diag-

onal in momentum space and reads H =

P

k

�

k

c

y

k

c

k

with

a tight-binding dispersion �

k

= �J cos(k). A nonzero

value of � or � leads to a four-fermion interaction term

that can be treated approximately by Hartree-Fock (for

details, see, e.g., Ref. 12), resulting in a renormaliza-

tion of �

k

to ~�

k

= �J(1 + 2A(� � 2�)) cos(k). The pa-

rameter A =

1

�

R

�

0

dk cos(k)f(~�

k

) has to be determined

self-consistently where f(�) = 1=(exp(��) + 1) is the

Fermi function. Using Eq. (5) the thermal conductivity

�(!) = D

th

(T )�(!) can be computed directly. Here we

focus on the case of 0 � � � 1 and � < �

crit

13

, which is

known to exhibit gapless spinonlike excitations. Results

for D

th

(T ) of the XXZ model are shown in Fig. 1 (thick

dashed lines). For comparison Bethe-ansatz results

7

are

included in the �gure (solid lines). In the case of � = 0,

no approximations are necessary in the Jordan-Wigner

approach and consequently, Jordan-Wigner and Bethe-

ansatz results are identical. For � > 0, the main ob-

servation is that the mean-�eld theory produces qualita-

tively the right picture of the temperature dependence of

D

th

(T ). Both the slope of D

th

� T at low temperatures

and the position of the maximum are well predicted. De-

viations at high temperatures are due to the neglect of

many-particle excitations in the mean-�eld approxima-

tion.

Bosonization - In the continuum limit the physics of

the anisotropic spin-1=2 chain at low energies is described

by the Luttinger-liquid Hamiltonian

14

H =

1

2

Z

dx

�

vK(@

x

�)

2

+

v

K

(@

x

�)

2

�

; (6)

where � is a bosonic �eld in 1 + 1 dimensions and � is

the dual �eld @

x

� =

1

K

@

�

�. K is the Luttinger parame-

ter and v = (J�=2)

sin 





is the spinon velocity where the

anisotropy is parametrized via � = cos(
) here. The lo-

cal current operator j(x) is again given by the equation

of continuity: @

x

j(x) = �@

t

h(x). We obtain

j = v

2

Z

dx @

x

�(x)@

x

�(x): (7)

The Drude weight follows from D

th

= ��

2

hj

2

i=N .

Thus we have to evaluate the two-point function

hj(x; �)j(0; 0)i, � being the time variable. The compu-

tation is similar to the procedure for the susceptibility

in Ref. 15. We change to coordinates z = v� + ix and

�z = v� � ix. By decomposing �(z; �z) = '(z) + �'(�z) into

its chiral parts and using the respective two-point func-

tions such as h'(z)'(w)i = �(K=4�)ln(z�w) we obtain

hj(x; �)j(0; 0)i = �2

v

2

(4�)

2

�

1

z

4

+

1

�z

4

�

: (8)

Before performing the space integration the imaginary

time direction is compacti�ed by mapping the plane (z)

into the strip (�) using z(�) = exp(2��=�) leading to

the replacement v� � ix ! (v�=�) sin(�

v��ix

v�

) in Eq.

(8). After the change of variables u = tan(��=�);w =

�i tan(i�x=(v�)) we �nally �nd

D

th

(T ) =

�

2

3

v T: (9)

This coincides with Kl�umper's and Sakai's analytic

expression

7

for the low-temperature limit of the XXZ

model if the velocity v is equal to v = (J�=2)

sin 





. How-

ever, the result is more generally valid for models with

the continuum limit given by the Luttinger-liquid Hamil-

tonian.

Exact diagonalization (ED) - In this part we

present our results for D

th

(T ) obtained by exact diago-

nalization for �nite systems with N � 18. We start with

the discussion of di�erent values of the anisotropy � at

zero frustration. Figure 2 showsD

th

for the isotropic case

� = 1, for a gapped, antiferromagnetic system (� = 10)

and in the ferromagnetic regime (� = �1;�2). While we

show in Fig. 2(a) that we reproduce the results by Alvarez

and Gros

9

for system sizes of N � 14, our analysis ex-

tends this case to N � 18. This is due to exploiting both

conservation of total S

z

and momentum k in the exact
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FIG. 2: Exact diagonalization (ED) for the XXZ chain:

(a) Isotropic chain (� = 1). Dashed(dotted) lines denote

even(odd)-numbered systems for N � 18 sites. Bethe-ansatz

results by Kl�umper and Sakai

7

are included in the plot (thick

solid line). Thin solid lines show ED results by Alvarez and

Gros

9

for N = 8; 10; 12; 14. (b) Antiferromagnetic, gapped

regime (� = 10). ED for N = 8; : : : ; 16 (dashed lines),

N = 18 (solid line). (c) Ferromagnetic regime (� = �1;�2).

Note: the thermodynamic limit is reached for N � 17. The

insets of (b) and (c) display the exponential suppression of

D

th

(T ) at low temperatures for � = 10 and � = �2 (in the

insets, vertical axes are scaled logarithmically, horizontal axes

reciprocally).

diagonalization. By comparing with the curve obtained

from the Bethe ansatz

7

(solid line in Fig. 2(a)) it can be

seen that for a system of N = 18 sites the thermody-

namic limit is reached for temperatures around T

>

�

0:3J

for � = 1. At low temperatures D

th

(T ) is exponentially

suppressed due to the �nite-size gap in the case of an

even number of sites and divergent for an odd number.

The latter is due to the degeneracy of the ground state

in case of odd-numbered systems.

For the gapped, antiferromagnetic case we choose � =

10, shown in Fig. 2 (b), where the �nite-size e�ects of

the two-spinon gap are small. The data for D

th

are con-

vergent for T

>

�

3J , but substantial �nite-size e�ects

are still present in the vicinity of the maximum, i.e.,

at small temperatures compared to the two-spinon gap

8:055126J

16

. At low temperatures the thermal Drude

weightD

th

(T ) is expected to be exponentially suppressed

in the thermodynamic limit. In the inset of Fig. 2 (b)

D

th

(T ) is plotted logarithmically versus 1=T . If one

�ts D

th

(T ) � exp(��=T ) to the numerical data at low

temperatures

17

one �nds � = 8:056J for N = 18 sites

with similar values of � found for other N . This com-

pares well to the two-spinon gap

16

. Hence we conclude

that mainly the elementary excitations contribute to the

thermal conductivity at low temperatures.

In the ferromagnetic regime (� � �1) (results are

shown for � = �1 and � = �2 in Fig. 2(c)) our main ob-

servation is that convergence with N is very good at all

temperatures. For example, we �nd for � = �2 that

the relative di�erence between the �nite-size data for

N = 16 sites and N = 17 is negligibly small, namely

jD

N=17

th

(T ) � D

N=16

th

(T )j=D

N=17

th

(T ) < 0:008 for T >

0:05J . If one extracts � from a �t ofD

th

(T ) � exp(��=T )

to the numerical data

17

for � = �2, we �nd � � 0:97J

which coincides with the one-triplet gap �(�+ 1)J that

can easily be obtained from a spin-wave computation.

The fast convergence is even more remarkable for the

case � = �1 where the numerical data are consistent

with D

th

(T ) � T at low temperatures. In addition,

there is no qualitative di�erence between even- and odd-

numbered systems due to the ferromagnetic nature of the

interaction for � � �1.

Frustrated chain - Now we turn to the case of

nonzero frustration. Since [H; j] 6= 0 here, care has to

be taken about o�-diagonal matrix-elements of j if de-

generacies occur. However, since we use classi�cation by

momentum k and S

z

degeneracies are lifted and do not

play a crucial role. In Fig. 3 we show D

th

(T ) obtained

numerically from Eqs. (4) and (5) for even system sizes

with N � 18 and � = 0:35;� = 1. A central result of

this paper is that, while we observe a �nite Drude weight

at temperatures T > 0 and all system sizes investigated,

we still �nd a substantial reduction of the Drude weight

with increasing system size at high T . This is in sharp

contrast to the XXZ model, where �nite-size e�ects are

small at high temperatures (see e.g. Fig. 2 (a)). These

observations clearly point to a vanishing of the Drude

weight in the thermodynamic limit for � = 0:35. How-

ever, the question of dissipationless thermal transport at

arbitrary � > 0 remains to be studied in more detail.

Finally, we compare our mean-�eld approach with nu-

merical results on �nite systems and with nonzero frus-

tration. In Fig. 4 we present the thermal Drude weight

of systems with N = 16 sites for � = 0; 0:05; 0:15 and

� = 1, i.e., in the gapless regime. As is obvious from this

�gure, there is a good agreement between ED and the
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FIG. 3: Thermal Drude weight D

th

(T ) for the frustrated

chain with � = 1; � = 0:35 for N = 8; : : : ; 18 sites.
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FIG. 4: Comparison between exact diagonalization (solid

lines) and mean-�eld approximation (dashed lines) on �-

nite systems with N = 16 sites for various values of � =

0; 0:05; 0:15 (top to bottom) and � = 1.

mean-�eld approach regarding the temperature depen-

dence of the thermal Drude weight. The general features

of D

th

(T ) are a reduction of the absolute value of D

th

on

increasing �, a shift of the position of the maximum to

lower temperatures and thus a crossing of the curves for

di�erent � at low temperatures which are present in both

the ED and mean-�eld results. Deviations at high tem-

peratures are again understandable due to the neglect

of many-particle excitations in the e�ective one-particle

picture.

Conclusion - We performed a detailed analysis of

the thermal Drude weight for anisotropic and frustrated

spin-1=2-Heisenberg chains by using mean-�eld theory,

bosonization and ED. In the case of the XXZ model

we demonstrated the applicability of these techniques

for computing the temperature dependence of the ther-

mal Drude weight. Using ED we obtained results on

�nite systems of N � 18 sites for arbitrary values of the

anisotropy �. In the ferromagnetic regime (� � �1)

of the XXZ chain the numerical data converge to the

thermodynamic limit at arbitrary temperature for mod-

erately small system sizes (N � 18). The analytical re-

sults compare well with the Bethe ansatz

7

in the gapless

regime of the XXZ model and to our numerics in the

case of the frustrated chain on �nite systems. Our nu-

merical data at � = 0:35 mark a clear di�erence between

the integrable XXZ case and the nonintegrable one at

� = 0:35: while in the former case the Drude weight re-

mains �nite in the thermodynamic limit we have clear

indications for a vanishing Drude weight at high tem-

peratures in the latter case. Extended analysis of these

�ndings for frustrated and dimerized chains and spin lad-

ders will be the subject of a forthcoming paper.
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