
Eur. Phys. J. B15 (2000) 423-434 cond-mat/9910318
ETH-TH/99-27

A Spin-1
2
Model for CsCuCl3 in an External Magnetic Field

A. Honecker1ab, M. Kaulke2,3, and K.D. Schotte2,4
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Abstract. CsCuCl3 is a ferromagnetically stacked triangular spin-1/2 antiferromagnet. We discuss models
for its zero-temperature magnetization process. The models range from three antiferromagnetically coupled
ferromagnetic chains to the full three-dimensional situation. The situation with spin-1/2 is treated by
expansions around the Ising limit and exact diagonalization. Further, weak-coupling perturbation theory
is used mainly for three coupled chains which are also investigated numerically using the density-matrix
renormalization group technique. We find that already the three-chain model gives rise to the plateau-like
feature at one third of the saturation magnetization which is observed in magnetization experiments on
CsCuCl3 for a magnetic field perpendicular to the crystal axis. For a magnetic field parallel to the crystal
axis, a jump is observed in the experimental magnetization curve in the region of again about one third of
the saturation magnetization. In contrast to earlier spinwave computations, we do not find any evidence
for such a jump with the model in the appropriate parameter region.

PACS. 75.10.Jm Quantized spin models – 75.45.+j Macroscopic quantum phenomena in magnetic systems
– 75.50.Ee Antiferromagnetics

1 Introduction

CsCuCl3 is in several respects a quite unusual stacked
triangular (anti)ferromagnet (see e.g. [1] for a review of
the subject). Among others, three-dimensional features
are vital in this compound: The ferromagnetic stacking is
just an order of magnitude larger than the antiferromag-
netic in-plane coupling while in most other materials the
coupling constants differ at least by two orders of magni-
tude. Furthermore, the smaller antiferromagnetic coupling
is crucial since it gives rise to a non-trivial behaviour of
CsCuCl3 in the presence of an external magnetic field.

The behaviour of CsCuCl3 in strong external magnetic
fields and at low temperatures has been studied already
some time ago (see e.g. [2]). One observes different be-
haviour, depending on whether the magnetic field is ap-
plied along or perpendicular to the c (crystal)-axis. For a
magnetic field along the c-axis, there is a jump in the mag-
netization curve at values of the magnetization of about
one third of the saturation value. In contrast, one finds a
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plateau in the same area if the magnetic field is applied
perpendicular to the c-axis1.

The spin in CsCuCl3 is carried by Cu2+ ions and thus
is a spin 1/2. So, a proper treatment of quantum fluc-
tuations is important. However, in order to be able to
treat the three-dimensional situation, most theoretical ap-
proaches have so far been either phenomenological [4–6]
or used first-order spinwave theory [7–10,5].

The goal of the present paper is to treat directly a
spin-1/2 model with realistic XXZ-anisotropies. We will
use series expansions around the Ising limit, numerical di-
agonalization and degenerate second-order weak-coupling
perturbation theory.

When one solves a classical or Ising-version of this
model, it becomes clear that essential features are already
captured by a three-chain variant. The bulk of our paper
will therefore concentrate on three antiferromagnetically
coupled ferromagnetic chains. The simplification to a one-
dimensional situation also opens the possibility of apply-
ing methods which work particularly well in one dimension
like the density-matrix renormalization group (DMRG)
method [11,12].

1 Actually, a plateau with 〈M〉 = 1/3 can also be observed in
other triangular antiferromagnets (see e.g. [3] for recent rather
clear examples).
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The purpose of the present paper is to gain some qual-
itative insight and demonstrate that new theoretical ap-
proaches to CsCuCl3 are viable. It should be possible to
develop all these approaches further to improve the accu-
racy of the results, to obtain a more realistic modeling or
to compute other quantities.

2 The model

Now we proceed to give a more accurate description of our
model and the parameter region we are interested in. We
model CsCuCl3 by a stacked triangular lattice antiferro-
magnet as sketched in Fig. 2.1.

J’

J h

Fig. 2.1. The stacked triangular (anti)ferromagnet in a mag-
netic field h. The bold lines denote our three-chain model.

The quantum-spin Hamiltonian corresponding to Fig.
2.1 is given by (compare also [8]):
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where the Si,x are spin-1/2 operators and h is a dimen-
sionless magnetic field. The notation 〈i, j〉 denotes neigh-
bouring pairs of the N chains. Here, the number of chains
N will be kept fixed while we are interested in the limit
of infinite L. Mostly, we choose ∆1 = ∆2 and then denote
both of them just by ‘∆’.

Quite often, CsCuCl3 is modeled by a Hamiltonian
which includes a Dzhalozhinski-Moriya interaction with a
vector pointing along the ferromagnetic chains in order to
account for a modulation in the magnetic structure with
a period of slightly more than 70 layers along the c-axis
[13]. However, by a local unitary transformation this can
be traded for a contribution to the anisotropy ∆2 and a
surface term which is then discarded (see e.g. [8]). Further
contributions to the anisotropies come from crystal fields.

In this way, the z-direction in spin space is identified with
the direction along the ferromagnetic chains (the c-axis)
in real space.

J will be ferromagnetic (J < 0) and J ′ antiferromag-
netic (J ′ > 0). In order to describe the material CsCuCl3
one uses J ′ ≈ −J/6 and ∆ slightly less than one [14–
17]. The actual values used should not matter so much;
it should however be noted that CsCuCl3 is described
by weakly coupled ferromagnetic chains – though not so
weakly coupled as is the case for many other triangular
lattice antiferromagnets [1]. A Monte-Carlo simulation of
an XY–model takes J ′ = −J/10 [18] showing the influence
the weaker coupling has on the critical behaviour of tri-
angular antiferromagnets. To make the situation clearer
in the study of the few-chain problem we choose a bit
stronger interchain coupling, e.g. J ′ = −J/3 to compen-
sate partially for the missing neighbouring chains.

The 〈i, j〉-summation in (2.1) should run over a tri-
angular lattice as sketched in Fig. 2.1. However, since
J ′ ≪ |J |, a reasonable first approximation should be ob-
tained by retaining only one site as a representative for
each of the three sublattices of the triangular lattice. This
leads to the model of three coupled chains which is indi-
cated by the bold lines in Fig. 2.1.

Since we are interested in the behaviour of CsCuCl3 at
low temperatures, we actually simplify to zero tempera-
ture in the present paper. We further restrict to magnetic
fields applied along the anisotropy axis. The magnetiza-
tion

〈M〉 =
2

NL

〈

N
∑

i=1

L
∑

x=1

Sz
i,x

〉

(2.2)

is then given as the expectation value of a conserved op-
erator. This is technically useful since it permits one to
relate all quantities in a magnetic field h to those with
a given magnetization 〈M〉 at zero field. In the presence
of an anisotropy ∆ 6= 1, the effect of a magnetic field
along the z-axis is different from a magnetic field in the
xy-plane. Because of the aforementioned simplification we
consider only the former case in the present paper.

Possible plateaux in the magnetization curve can be
most easily read off in the strong-coupling limit J ′ ≫ |J |.
For a fixed number N of coupled chains one finds [19,
20] that for J = 0 the only possible values of the mag-
netization are 〈M〉 = −1, −1 + 2/N , ..., 1 − 2/N , 1. In
particular, for all N that are divisible by three, a plateau
with 〈M〉 = 1/3 is possible (the simplest case is N = 3).
However, this strong-coupling argument does not ensure
that a certain plateau actually does occur for given val-
ues of the parameters – this issue requires a computation
of the magnetization curve (at least in the vicinity of the
plateau-value of the magnetization).

Before we proceed with the discussion of the magne-
tization process, we note that a straightforward compu-
tation yields the upper critical field for N = 3 cyclically
coupled chains

huc = J ′(∆2 +
1
2 ) + J(∆1 − 1) (2.3)

for J ′ > 0 and J < 0. This result is based on the as-
sumption that the transition proceeds with a single spin
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flip and is therefore valid for ∆1 small enough (in partic-
ular ∆1 ≤ 1). If the transition to saturation becomes first
order, (2.3) ceases to be valid.

3 Ising expansions for three chains

The Ising limit of N = 3 ferromagnetic chains (2.1) which
are mutually antiferromagnetically coupled is easily un-
derstood: At zero temperature, only states with 〈M〉 =
±1 and 〈M〉 = ±1/3 are realized. The groundstate at
〈M〉 = 1/3 is given by a configuration in which all spins
in two chains point up and those in the third chain point
down. Perturbation expansions in ∆−1 around this state
and the ones with a single spin flipped respectively to it
are readily performed. One finds the lowest gaps for the
single spin excitations with states that are translational
invariant along the chain direction, and antisymmetrized
between the two equivalent chains for an additional spin
flipped down.

With this information one proceeds in the same way
as for the triangular lattice [21] (the precise method has
been summarized in [22]) to find sixth-order series for the
gap of a single flipped spin. The series for general J and
J ′ can be found in appendix A. Here we just present the
specialization to J ′ = −J/3:

hc1
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It should be noted that for sufficiently large∆ it is actually
favourable to flip large clusters of spins rather than a single
one if one changes the applied magnetic field. Therefore,
the transition at large ∆ is first order and (3.1) and (3.2)
(or (A.1) and (A.2)) are not the boundaries of the 〈M〉 =
1/3 plateau. Nevertheless, in contrast to other Ising series
such as those for the triangular lattice [21], these series are
remarkably well behaved down into the region ∆ ≈ 1 for
the values of parameters we are interested in (J ′ small).
The ending point of the 〈M〉 = 1/3 plateau is determined
by the condition hc2(∆c)− hc1(∆c) = 0. For example, for
J ′/|J | = 1/3 we can use the raw series (3.1) and (3.2) and
find that the plateau ends at ∆c = 0.965, 0.876 or 0.997
if one truncates the series at fourth, fifth or sixth order,
respectively. At J ′/|J | = 1/6 convergence is a bit better
and using (A.1) and (A.2) one finds the ending point at
∆c = 0.972, 0.954 and 0.985 for fourth, fifth and sixth
order, respectively.

This already indicates that the precise value of the
XXZ-anisotropy is crucial for explaining the presence or
absence of a plateau with 〈M〉 = 1/3.

4 Exact diagonalization for three chains

Next we present exact diagonalization results for three
cylindrically coupled chains with length L = 8. Fig. 4.1
shows the magnetic phase diagram for the su(2)-symmetric
situation ∆ = 1. The lines show the magnetic fields at
which a transition occurs between the states with the
magnetization indicated in the figure (for L = 8, only
〈M〉 = m/12 with m = −12, . . . , 12 can be realized). One
observes a plateau with 〈M〉 = 1/3 for all J ′ > 0. The
transition to saturation clearly is given by huc = 3

2J
′,

as it should be according to (2.3). In the ferromagnetic
regime J ′ < 0, the magnetization jumps from 〈M〉 = −1
to 〈M〉 = 1 as h passes through zero.

We would like to remark the striking smoothness of
the transition lines in the weak-coupling regime J ′ ≪ |J |
in Fig. 4.1. This suggests that expansions in J ′ should be
a viable way to understand the magnetization process of
three coupled chains (at least in a situation with some
su(2) symmetry preserved). This will be the subject of a
later section.

For J ′ ≫ |J |, we can use the effective Hamiltonian
given in [19] to determine the lower boundary of the 〈M〉 =
1/3 plateau. By exact diagonalization we find with ∆ = 1
that hc1/|J | = 0.42096, 0.41880, 0.41779, 0.41723, 0.41689
for L = 8, 10, 12, 14, 16, respectively, and in the limit J/J ′ →
0. By comparison with Fig. 4.1 we see that the lower
boundary of the 〈M〉 = 1/3 plateau must therefore still
increase beyond the right boundary of the figure.
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Fig. 4.1. Magnetic phase diagram for three coupled chains
with L = 8 and ∆ = 1.

Now we fix the coupling constants to J ′ = |J |/3 and
look at the dependence on the XXZ-anisotropy ∆. The
resulting magnetic phase diagram for L = 8 is shown in
Fig. 4.2.

One observes that for ∆& 1.14 only the values 〈M〉 =
±1/3, ±1 occur. The corresponding plateaux are sepa-
rated by first-order transitions in this region. Outside this
region, the lower boundary of the 〈M〉 = 1/3 plateau and
the transition to saturation seem to remain second-order
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Fig. 4.2. Magnetic phase diagram for three coupled chains
with L = 8 and J ′ = |J |/3. The dashed lines denote the sixth-
order series (3.1) and (3.2). The diamonds denote extrapolated
values of the boundary of the 〈M〉 = 1/3 plateau (see next
section).

transitions. The transition to saturation is given by (2.3)
in the region where it is of second order.

The 〈M〉 = 1/3 plateau can be observed in Fig. 4.2
for ∆& 0.98, i.e. it survives a small amount of XY-like
anisotropy. The transition at its upper boundary becomes
first order for weak Ising-like anisotropies. For L = 8
flipping two spins is favoured over flipping just one for
∆& 1.05. A guess about what happens in the thermody-
namic limit L → ∞ is not obvious. Furthermore, in the
vicinity of ∆ ≈ 1.13 there is some evidence for a jump in
the magnetization curve at h = 0.

The dashed lines in Fig. 4.2 show the series expansions
(3.1) and (3.2) in ∆−1. They denote the energy-cost to
flip a single spin above the 〈M〉 = 1/3 plateau and should
therefore be compared to the corresponding full lines. The
agreement of these sixth-order series with the numerical
data is quite good in view of the fact that the window
shown in the figure is rather far from the regime ∆ →
∞ where the series were derived. These series point to a
closing of the plateau in about the same region indicated
by the numerical data.

We conclude this section by noting that the transition
to full magnetization is compatible with the Dzhaparidze-
Nersesyan–Pokrovsky-Talapov (DN-PT) universality class
[23,24]. From a technical point of view, it is important that
conservation of the magnetization M reduces the dimen-
sion of the space of states considerably such that we can
apply the exact diagonalization technique to large lattices.
Actually, for many purposes it is sufficient to consider only
two-spin deviations [25] which can be easily treated nu-
merically for volumes of around 1000 spins. Nevertheless,
for J < 0 one observes much stronger crossover effects
than for J > 0 [20].

5 DMRG

Because of the one-dimensional topology of the three-leg
ladder we have used DMRG [11] (for a detailed review of
the DMRG method see also [12]) in order to determine
more accurately the value of the anisotropy ∆ where the
plateau in the magnetization occurs. Similar DMRG com-
putations for the magnetization process of a three-chain
model with J > 0 have been carried out in [26,27] (see also
[28] for a DMRG study of other spin ladders in a magnetic
field). Details on our implementation of the DMRG pro-
cedure can be found in appendix B.

To do the calculations, three spins Si,x, i = 1, 2, 3 for
fixed x (one triangle in Fig. 2.1) were combined to one
site. In this way one ends up with a spin chain of L sites.
We have calculated the 〈M〉 = 1/3 plateau for ladders of
90 spins (30 sites in the corresponding chain model) for
different values of the anisotropy ∆.
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Fig. 5.1. Upper and lower critical fields as a function of 1/L
for different values of ∆. Filled symbols denote DMRG results
and open symbols data from exact diagonalization.

Fig. 5.1 shows the upper and lower critical fields as
a function of the inverse chain length 1/L. For large ∆
(≥ 0.98) the 〈M〉 = 1/3 plateau also exists in the thermo-
dynamic limit. In the case of small ∆ (≤ 0.935) the data
is compatible with a vanishing plateau2. For ∆ ≤ 0.8 the
plateau width follows a 1/L law to a good approximation
(this form is a strong indication of a vanishing plateau
width).

The interesting point is the threshold where the pla-
teau opens. However, the infinite-system algorithm of the
DMRG method fails already for short chain lengths when
∆ approaches the region around 0.95 where the threshold
is expected. The reason for this is not yet clear. Therefore
in Fig. 5.1 results from exact diagonalization are plotted

2 Variation of the truncation level in the DMRG procedure
indicates that the data may have errors up to 10−3J . . . 10−2J
for the larger system sizes.
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for these values of ∆. The finite-size data for the plateau-
boundaries has been extrapolated to infinite L using ei-
ther a polynomial fit in 1/L or a fit with corrections of
the form exp(−cL). The former fit should work well for
small ∆ while the latter one is justified when a plateau
is present, i.e. for the larger values of ∆. The results of
the extrapolation are shown by the diamonds in Fig. 4.2.
The error of the extrapolation is smaller than the size of
the symbols, but there are additional systematic errors
(e.g. in the DMRG truncation procedure) which may be
somewhat larger. Therefore, all the data taken together
indicates that the plateau closes indeed at ∆ ≈ 0.95 –
at least it becomes unobservable in this region and for
all practical purposes can be considered to be absent for
∆ < 0.95.

6 Weak-coupling expansions

Since the coupling constants for CsCuCl3 lie in the weak-
coupling regime J ′ ≪ |J |, it is natural to try to analyze
(2.1) by an expansion in J ′ around the decoupled point
J ′ = 0. Such an approach is even more strongly suggested
by Fig. 4.1 which shows that at least for N = 3 and ∆ = 1,
the transition lines are very smooth functions of J ′/|J |.

6.1 First order

We choose ∆1 = 1 in (2.1) for the weak-coupling expan-
sions because of two reasons (∆2 will however be retained
as a parameter). Firstly, we can then exploit the su(2)
symmetry of the decoupled chains in order to immediately
write down their groundstates for a given magnetization.
Secondly, in this case we can expect a smooth dependence
on the coupling J ′ (see Fig. 4.1), which is not present
otherwise (this is indicated by numerical diagonalization
– compare also Fig. 4.2). A consequence of this choice
∆1 = 1 is that a given magnetization can be arbitrar-
ily distributed among the individual chains. This means
that the groundstate is highly degenerate and one has to
perform degenerate perturbation theory.

The groundstate space of a single su(2)-symmetric fer-
romagnetic Heisenberg chain of length L is the spin-L/2
representation. Thus, one can immediately write down the
groundstate with a given total Sz eigenvalue m:

|j = L/2,m〉 =
1

√

Nj,m

(

S−
)j−m

|j, j〉 , (6.1)

where S− is the total step operator for a single chain.
Here j denotes this spin and m the eigenvalue of the z-
component of the total spin operator. The normalization
Nj,m in (6.1) should be chosen such that all states |j,m〉
are normalized to one. Otherwise it is sufficient to know
that the number of terms on the r.h.s. of (6.1) is

(

2j
j−m

)

.

Because of translational invariance one readily finds
that

〈j,m|Sz
i,x|j,m〉 =

1

L
〈j,m|Sz |j,m〉 =

m

L
=
m

2j
. (6.2)

A simple combinatorial consideration further leads to

〈j,m+ 1|S+
i,x|j,m〉 =

√

(j −m)(j +m+ 1)

2j
,

〈j,m− 1|S−
i,x|j,m〉 =

√

(j −m+ 1)(j +m)

2j
. (6.3)

Note that due to translational invariance the matrix ele-
ments (6.2) and (6.3) do not depend on the position of the
spin-operator x. The summation over x in (2.1) therefore
just yields a factor L = 2j.

In (6.2) and (6.3) one recognizes the matrix elements
of the J operators of a spin-j su(2)-representation nor-
malized by a factor 1/(2j). Thus, the interaction part of
the Hamiltonian (2.1) can be rewritten in first order as

HI =
J ′

2j

∑

〈k,l〉

∆2J
z
kJ

z
l + 1

2

(

J+
k J

−
l + J−

k J
+
l

)

− h
∑

k

Jz
k .

(6.4)
This form is particularly useful for an analytical treat-
ment. Firstly, one sees that for L = 2j → ∞, the first-
order interaction maps to a problem of classical spins
where each spin stands for one chain. In the groundstate
of a classical spin model on the triangular lattice, all spins
on one sublattice point in the same direction. Therefore, a
triangular arrangement of ferromagnetic chains and three
coupled chains become equivalent at first order in J ′ –
only the coupling constant is rescaled by the different co-
ordination number.

Using this mapping to a classical spin model, a number
of conclusions can be drawn which apply to three coupled
chains as well as the full triangular arrangement:

1. The entire magnetization curve is linear at ∆2 = 1.
2. For ∆2 > 1, the magnetization jumps from 〈M〉 =

−m0 to 〈M〉 = m0 with m0 = (∆2− 1)/(3(∆2+1)) as
h passes through zero (see also Fig. 4.2).

3. For ∆2 > 1 there is a plateau with 〈M〉 = 1/3. Its
lower boundary is given by hc1 = zJ ′/4 where z is the
number of nearest neighbours (z = 2 for three coupled
chains and z = 6 for an underlying triangular lattice).
The upper boundary is more difficult to determine an-
alytically – a lower bound3 is given by hc2 ≥ z∆2J

′/4.
4. The asymptotic behaviour of 〈M〉 as a function of h is

linear close to saturation or to the boundaries of the
〈M〉 = 1/3 plateau:

〈M〉 −Mc ∝ h− hc . (6.5)

With N = 3 chains, the first conclusion can actually be
obtained for finite L using a different argument which is
also useful for determining the groundstate degeneracy:
For ∆2 = 1 and N = 3 one can further rewrite eq. (6.4)
as

HI =
J ′

4j
(J1 + J2 + J3)

2 −
3J ′(j + 1)

4

−h (Jz
1 + Jz

2 + Jz
3 ) . (6.6)

3 The important point is that hc2
> hc1

for ∆2 > 1.
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This shows that the energy is a quadratic function of the
total spin (or the magnetization 〈M〉). Therefore, all steps
in the finite-size magnetization curve acquire equal width
at ∆2 = 1. Also the groundstate degeneracy can be easily
inferred from the representation (6.6). It is found to be
maximal at 〈M〉 = 1/3 where it is equal to L + 1 and
minimal at 〈M〉 = 0, 1 where the groundstate is unique.

The treatment of the second order is going to be based
on a numerical determination of the groundstate of the in-
teraction HI at N = 3 and finite L. It is then important
that the groundstate should be non-degenerate at first or-
der. This precludes an analysis of the second order for the
case ∆2 = 1 where after treatment of the first order one is
still left with large degeneracies. For ∆2 6= 1, the ground-
states with a given magnetization are at most twofold de-
generate4. This twofold degeneracy is due to the spatial
symmetries of the three-chain model which can be used
to lift it completely (alternatively, such a two-fold degen-
eracy can be ignored since it does not affect the results).
Thus, in particular the case we are mainly interested in,
namely ∆2 < 1 is amenable to a numerical treatment up
to the second order.

6.2 Second order

If one goes beyond the first order, one has to consider also
excitations that are created by the interaction from the
ferromagnetic groundstates (6.1). At second order, only a
single spin can be flipped in each chain. To deal with the
second order perturbation it is therefore sufficient to look
only at spinwave states

|j,m, k〉 =
1

√

N̂j,m

L
∑

x=1

eikxS−
i,x|j,m+ 1〉 (6.7)

with a suitable normalization factor N̂j,m. This represen-
tation is useful because the states (6.7) are eigenstates of
the Hamiltonian H0 for a single chain

(

H0 −
JL

4

)

|j,m, k〉 = |J | (1− cos (k)) |j,m, k〉 . (6.8)

The computation of the matrix elements is now a bit more
cumbersome than for the first order but follows the same
lines of combinatorial considerations. In this manner one
finds the following counterpart of (6.2) for k 6= 0:

〈j,m, k|Sz
i,x|j,m, 0〉 = −

e−ikx

2j

√

(j −m)(j +m)

2j − 1
. (6.9)

4 Still, for ∆2 > 1 there are excited states above the ground-
state(s) for a given magnetization which have a gap which
closes rapidly with increasing system size L. Therefore, de-
pending on the chain length L, the magnetization and the nu-
merical accuracy, groundstate degeneracies may appear to be
threefold in the region ∆2 > 1.

The k 6= 0 generalization of (6.3) is found to be given by

〈j,m+ 1, k|S+
i,x|j,m〉 = −

e−ikx

2j

√

(j −m− 1)(j −m)

2j − 1
,

〈j,m− 1, k|S−
i,x|j,m〉 =

e−ikx

2j

√

(j +m− 1)(j +m)

2j − 1
.

(6.10)

With the matrix elements (6.9) and (6.10) one can now
easily write down the matrix elements for the interaction
between two chains. It should be noted that due to trans-
lational invariance, spinwave states with momenta k and
−k have to come in pairs (in other words:

∑

x e
−i(k+k′)x =

Lδk+k′,0). This leads to a cancellation of the phase factors
in (6.9) and (6.10) and thus makes the matrix elements
of the interaction k-independent. Then the k-summation
can be pulled out from the second-order matrix. So, one
obtains for the second-order contribution

〈ψ1|V

(

JLN

4
−H0

)−1

V |ψ1〉 = E−1〈ψ1|H
†
IIHII |ψ1〉 ,

(6.11)
where |ψ1〉 is the eigenstate of the first-order matrix HI .
The energy denominator is given by

E−1 = −
1

2|J |

L−1
∑

κ=1

1

1− cos
(

2πκ
L

) = −
(L− 1) (L+ 1)

12|J |
.

(6.12)
In order to write HII in a compact form, we introduce
operators Ez

i , E
±
i acting in the groundstate space of the

ith chain as

Ez
i |j,m〉 = |j,m〉 , E±

i |j,m〉 = |j,m± 1〉 . (6.13)

Since the matrix elements of HII do not depend on k one
can identify all spaces spanned by |j,m, k〉 for a given k
with that spanned by |j,m〉. Then HII can be written as

HII

J ′
=

∑

〈i,l〉

{

∆2

√

(j −mi)(j +mi)(j −ml)(j +ml)

2j(2j − 1)
Ez

i E
z
l

−

√

(j −mi − 1)(j −mi)(j +ml − 1)(j +ml)

4j(2j − 1)
E+

i E
−
l

−

√

(j +mi − 1)(j +mi)(j −ml − 1)(j −ml)

4j(2j − 1)
E−

i E
+
l

}

.

(6.14)

Here the mi denote the quantum numbers of the state

on which HII is acting. The combination H†
IIHII appear-

ing in (6.11) can be expressed by spin operators. In the
isotropic case ∆2 = 1 a simple form can be found

H†
IIHII

J ′2
=

∑

〈i,l〉

(JiJl)
2 − 2j(j − 1)JiJl + j3(j − 2)

4j2(2j − 1)2

(6.15)
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which reduces for large chain length L = 2j ≫ 1 to
∑

〈i,l〉(JiJl/j
2 − 1)2/16 that is to the exchange between

two chains squared instead of the simple exchange in first
order perturbation theory given by (6.4). The squared
exchange has been used as a tool to take into account
quantum or thermal fluctuations (see [5] and references
therein).

So far, everything is valid for a general underlying lat-
tice. Let us now comment on the results obtained from
this second-order approach for three chains. For this case,
one can easily determine the groundstate |ψ1〉 of (6.4) nu-
merically for L up to a few hundred when ∆2 < 1. For
short chains, the first and second order expansion terms
obtained from (6.4) and (6.11) compare favourably with a
direct diagonalization of the Hamiltonian (2.1). However,
the second-order corrections to the energy obtained from
(6.11) behave as L2 for large L. Alternatively, the second-
order corrections to h(〈M〉) computed from these energies
are proportional to L for long chains. This means that the
radius of convergence shrinks rapidly to zero with increas-
ing L. The additional factor L which limits the second-
order weak-coupling approach for three coupled chains can
be traced to the energy denominator (6.12) which is the
main source of the system-size dependence.

With hindsight this divergence of the second order
can be expected since a one-dimensional ferromagnet can-
not be stable to a weak antiferromagnetic perturbation if
the chain length is long. Second order perturbation the-
ory connects only two chains, if one compares with con-

tributions to the ground state energy ∝ J ′3/2 one gets
from a Holstein–Primakoff analysis for two ferromagnetic
chains coupled antiferromagnetically one notices imme-
diately the difficulties. Further in the limit of vanishing
J ′, one would find a linear behaviour of the magnetiza-
tion (6.5) in the thermodynmic limit. Now, if one takes
this limit L → ∞ at fixed J ′ > 0, the asymptotic DN-
PT square root behaviour〈M〉 −Mc ∝

√

|h− hc| which
is characteristic for one dimension [23,24] has to be re-
covered. Such an abrupt change in the functional form is
simply not compatible whith a convergent perturbation
expansion in the thermodynmic limit. Only in three and
higher dimensions, the functional behaviour (6.5) remains
valid for the interacting quantum system (see section 7
of [21] and references therein). So, the second-order cor-
rection has a chance to be convergent only if the thermo-
dynamic limit is taken in all three directions simultane-
ously. On the one hand, this is the case most relevant to
CsCuCl3. On the other hand, already determination of the
first order groundstate involves the solution of a spin-L/2
problem on the triangular lattice. Then the numerical ef-
fort becomes much larger than in the three-chain model
and one gains little by the perturbative treatment in com-
parison to a direct numerical treatment of the full problem
(which will be carried out in section 8.2). Therefore, here
we do not pursue evaluation of the second order for the
full three-dimensional situation further.

7 Exact diagonalization results for six chains

Now we briefly look at the Hamiltonian (2.1) for N = 6
chains. The coupling of the nearest neighbour pairs 〈i, j〉
(1 ≤ i, j ≤ 6) is specified by the lines in the following
picture:
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(7.1)

This is basically a refined version of theN = 3 chain model
discussed in the preceding sections and thus a natural step
in the direction of the three-dimensional compound. In
particular, one can see that N must be a multiple of three
if one wishes to expect a plateau with 〈M〉 = 1/3 just on
the basis of counting the chains. For N = 6, this count-
ing argument indicates the possibility of having plateaux
with 〈M〉 ∈ {0,±1/3,±2/3,±1}. If one now diagonalizes
a single layer (L = 1) of the model specified by (2.1) and
(7.1), one finds that all these values are indeed realized
one after the other in the presence of a magnetic field.

In a way similar to section 4 we have computed the
complete magnetization curve of this six-chain model for
L ≤ 4 layers and parts of this curve for L ≤ 35 at two
values J ′/|J | = 1/3, 5/7 and ∆ = 1 5 The results for
3 ≤ L ≤ 6 are shown in Fig. 7.1. The thick full lines
in this figure are somewhat speculative extrapolations to
L = ∞ which need discussion.

For all the sizes which we have investigated, there is
an 〈M〉 = 0 plateau (or equivalently a spin-gap), which
however vanishes rapidly with increasing L. We are there-
fore confident that there is no 〈M〉 = 0 plateau in the
thermodynamic limit of the six-chain model, but rather a
steep increase around 〈M〉 = 0 as indicated by the thick
full line in Fig. 7.1.

To see what happens to the other two plateaux which
are permitted according to the aforementioned counting
argument (i.e. 〈M〉 = 1/3 and 〈M〉 = 2/3) we have per-
formed extrapolations of the available data for the bound-
aries of these plateaux using the vanden Broeck–Schwartz
algorithm (see e.g. [29]). This works better for 〈M〉 = 2/3
where we can use data for 2 ≤ L ≤ 6 than for 〈M〉 = 1/3
where just L = 2, 3, 4 is accessible. The result for 〈M〉 =
1/3 is compatible with a plateau of zero width while for
〈M〉 = 2/3 the error estimates indicate a non-vanishing
plateau. The conclusion of the 〈M〉 = 1/3 plateau being
absent in the thermodynamic limit is further supported
by the observation that at finite size this step is about
as wide as the neighbouring ones. On the other hand, the

5 The average coordination in the six-chain model (7.1) is
larger than in the three-chain model which suggests to also
investigate smaller J ′. However, the data is already somewhat
ambiguous at J ′/|J | = 1/3. Therefore, we have added a larger
value of J ′ rather than a smaller one.
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width of the 〈M〉 = 2/3 step is notably larger than that
of its neighbours – at least for J ′/|J | = 5/7.

a)

0

1/6

1/3

1/2

2/3

5/6

1

0 0.25 0.5 0.75

<M>

h/|J|

b)

0 0.5 1 1.5

Fig. 7.1. Magnetization curves for six coupled chains with
∆ = 1 and a) J ′/|J | = 1/3, b) J ′/|J | = 5/7. The number of
layers is L = 3 (dotted line), L = 4 (thin full line), L = 5
(dashed line) and L = 6 (dashed-dotted line). The thick full
line is the extrapolation to L = ∞ discussed in the text.

Therefore we have decided to draw plateaux at 〈M〉 =
2/3 in Fig. 7.1 but none for 〈M〉 = 1/3. The boundaries
of the former case are the only points where fairly reli-
able extrapolations to L = ∞ are available. Otherwise we
follow the procedure of [30,31] and draw a line through
the midpoints of the steps at the largest available system
size, although it is apparent from Fig. 7.1 that finite-size
effects are still of some importance.

Finally, the transition to saturation is of the same type
as that for the three-leg ladder, i.e. it is again compatible
with the DN-PT universality class [23,24], but subject to
strong crossover effects in the region J < 0.

The main result of this discussion of N = 6 chains
is that already doubling the number of chains leads to a
vanishing of the 〈M〉 = 1/3 plateau – at least for ∆ = 1
and weak coupling J ′. This is a first indication that this
plateau which is easily observable in N = 3 coupled chains
might actually not survive the infinite-lattice limit in the
plane perpendicular to the chains.

8 The three-dimensional case

The results from the various techniques which we have
applied so far to simple models agree well with each other.
This encourages us to proceed a bit further and look at
the three-dimensional model corresponding to CsCuCl3.
This means we consider the Hamiltonian (2.1) where the
nearest neighbour pairs 〈i, j〉 will now be those of the two-
dimensional triangular lattice.

8.1 Ising expansions

We start with Ising expansions. The structure of the state
with 〈M〉 = 1/3 and the lowest single-spin excitations
above it is readily inferred from the treatment of three
coupled chains and the two-dimensional triangular lattice
[21]. It is then straightforward to obtain fourth-order series
for these excitation energies6. The explicit series can be
found in appendix A. As before, these results correspond
to the boundaries of the 〈M〉 = 1/3 plateau for sufficiently
small ∆. At large values of ∆, the associated transitions
should be first order such that one would have to look at
other excitations to determine these boundaries.

If we insert the value J ′ = |J |/3 into the raw fourth-
order series (A.3,A.4) we find that the plateau closes at
∆c = 0.939. Using instead J ′ = |J |/6 (which is appropri-
ate for CsCuCl3), the ending point shifts to ∆c = 0.948.
Both values are slightly smaller than those obtained for
the three-chain model with the same order. However, in
this region the actual values should not be taken too seri-
ously, i.e. higher orders should still important and numer-
ical data will indicate that the true ∆c is probably larger.
The main conclusion obtained from the Ising series is that
the 〈M〉 = 1/3 plateau closes in the region ∆c ≈ 1, proba-
bly somewhere slightly below one in the region of XY-type
anisotropies.

8.2 Exact diagonalization

To locate the ending point more accurately and to see
if a jump in the magnetization curve develops, we have
also numerically computed magnetization curves on three-
dimensional 3×3×L clusters. Some magnetization curves
are shown in Fig. 8.1. Two criteria can be used to discuss
the magnetization process in the region 〈M〉 = 1/3:

1. If the magnetization curve passes smoothly through
〈M〉 = 1/3, the width of the finite-size plateau at
〈M〉 = 1/3 should scale as 1/L (with L the number
of stacked segments of the triangular lattice).

2. For a smooth curve at magnetization 〈M〉, the neigh-
bouring steps of the finite-size magnetization curves
should have the same width. If a plateau is present,
the step with magnetization 〈M〉 should be broader
than its neighbours. A jump at sufficiently large sys-
tem sizes should in contrast be indicated by a step that
is smaller than its neighbours at small system sizes.

A remark is in order before we apply these criteria to
our data. Although we expect to obtain a reasonable ap-
proximation to the thermodynamic limit despite the small
linear size of the systems accessible to us, one can clearly
not rule out that the behaviour would change on larger
systems. Our conclusions should therefore be taken as a
probable possibility.

For J ′/|J | = 1/6 and ∆ = 1, both criteria indicate the
presence of a small plateau with 〈M〉 = 1/3. Instead for

6 This can probably be pushed a bit further. Higher-order
series have been computed numerically e.g. for the Heisenberg
model on three-dimensional cubic lattices [32].
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Fig. 8.1. Magnetization curves of 3 × 3 × L clusters with a)
J ′/|J | = 1/6, ∆ = 1; b) J ′/|J | = 1/6, ∆ = 0.97; c) J ′/|J | =
0.172882193, ∆1 = 0.98789825, ∆2 = 1. The number of layers
is L = 2 (dashed line), L = 3 (thin full line) and L = 4 (dotted
line). The bold full line is an extrapolation to L = ∞.

J ′/|J | = 1/6 and ∆ = 0.97 both criteria applied to L = 2
and L = 3 point to a smooth magnetization curve in the
region 〈M〉 = 1/3. This suggests 1 > ∆c > 0.97 which is
slightly larger than that found from the fourth-order Ising
expansions.

Since we did not find evidence for a jump so far, we also
performed diagonalizations for the parameters J ′/|J | =
0.172882193, ∆1 = 0.98789825, ∆2 = 1, since for these
precise parameters a jump was found in [8] using first-

order spinwave theory. The finite-size magnetization curves
for these parameters are shown in Fig. 8.1c). Again, both
criteria discussed above are compatible with a smooth
curve at 〈M〉 = 1/3, i.e. neither a plateau nor a jump
seems to be present. However, on a system with volume
27 = 3 × 3 × 3, we would expect some indication for a
jump of size δ〈M〉 ≈ 0.04 as estimated in [8] or even
δ〈M〉 ≈ 0.01 as observed experimentally [2]. One may
attribute the absence of such signals for a jump to finite-
size effects beyond the discretization of the magnetization
curve at a volume with 27 spins. However, it can be seen
at larger 〈M〉 that increasing the number of layers L leads
only to small finite-size effects. On the other hand, also the
approach of [8] is based on several approximations and is
therefore not guaranteed to describe the situation with
spin 1/2 accurately.

To conclude this section, let us briefly comment on
the utility of order parameters which one might suspect
to be useful for characterizing the transition. First, one
could check numerically that the correct spin structures
have been used in [8]. However, we do believe that the
spin structures are indeed the umbrella-type and copla-
nar configurations in the low- and high-field regions, re-
spectively. In fact, this has been reliably established via
a mapping to a gas of hard-core bosons [33] for magnetic
fields close to the saturation value. The question which we
raised above regards the nature of the transition which oc-
curs at intermediate fields, i.e. if it is second order, first
order or occurs e.g. via an intermediate phase. However,
we do not expect much additional insight into the nature
of the transition from a numerical determination of or-
der parameters, mainly because of finite-size effects such
as the discretization of the magnetization axis. For this
purpose the magnetization 〈M〉 (which we have discussed
above) might even be somewhat better suited although it
is not an order parameter.

9 Conclusions

We have theoretically observed a plateau with 〈M〉 =
1/3 in a frustrated triangular magnet. For applications
to CsCuCl3, it is important to observe that the width of
this plateau depends on several factors.

Consider for example a single triangle. If there are only
three spin-1/2 spins, the magnetization can obviously only
have the values 〈M〉 = ±1/3 and ±1. The plateau with
〈M〉 = 1/3 survives (at least for ∆ = 1) the ferromag-
netic stacking of infinitely many triangles, but the inter-
action reduces its width. A similar phenomenon occurs if
one instead takes the limit of a two-dimensional triangu-
lar lattice in the plane. Also here, the plateau survives the
thermodynamic limit for ∆ ≈ 1 [34,21], but again gets
narrower.

A further factor is the XXZ-anisotropy ∆. For a mag-
netic field along the c-axis, the plateau with 〈M〉 = 1/3
survives only a small amount of XY-like anisotropy be-
fore it disappears. The same observation has already been
made for the triangular lattice antiferromagnet [34,21]. If
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the magnetic field is applied in the triangular plane per-
pendicular to the c-axis, an opposite behaviour is known
from the triangular lattice antiferromagnet [35]: Here one
observes a clear plateau-like feature in the region 〈M〉 =
1/3 even in the XY case ∆ = 0.

If one combines these observations with the parameters
which are appropriate for the description of CsCuCl3, one
understands the absence of a plateau for a magnetic field
in the direction of the c-axis and that a plateau-like feature
only occurs if the magnetic field is applied in the plane [2].

In contrast, we failed to reproduce the jump observed
experimentally [2] for a magnetic field along the c-axis
with the model (2.1) in the appropriate parameter region.
While we observe several first-order transitions for ∆ > 1,
we have no evidence for first-order transitions for ∆ < 1.
Actually, our results for the three-chain model as well as
similar ones for the two-dimensional triangular lattice [21]
provide quite strong evidence against such a jump for spin
1/2 and ∆ < 1. However, a first-order spinwave analysis
[8] predicted a jump in the magnetization curve of the
Hamiltonian (2.1) with ∆1 < 1. Since it may be possible
that this jump cannot occur in less than three dimensions,
we have also investigated the three-dimensional spin-1/2
model numerically. Using precisely the same parameters as
in [8], we did not find any evidence for a jump on 3×3×L
clusters either. This discrepancy is puzzling, in particular
since the weak-coupling analysis shows that weakly cou-
pled ferromagnetic chains are close to a classical situation
(though in two rather than in three dimensions7). While
we cannot fully exclude that one would find a jump in the
spin-1/2 model at larger system sizes, also the discussion
in [8] is based on several approximations. We therefore be-
lieve that the issue of the experimentally observed jump
deserves further theoretical attention. One possibility is
also that this jump is caused by effects which are not in-
corporated into the model (2.1), such as elastic response
to the external magnetic field. The anomalies observed in
a recent soundwave propagation experiment [36] may be
a further indication for the necessity of such extensions.

In summary, we have shown that a three-chain model
describes the low-temperature magnetization process of
CsCuCl3 almost as well as the full three-dimensional model.
The three-chain model has the advantage of being sim-
pler to analyze. We have concentrated on zero (or small)
temperature, but there is also a large amount of exper-
imental data on the h-T phase diagram (see [37–39] for
a small selection of recent results) which are waiting to
be discussed in the framework of microscopic models. The
three-chain model which we have discussed in the present
paper may be a useful starting point since one should be
able to treat it with a finite-temperature variant [40,41,
12] of the DMRG procedure.

From a technical point of view, we have shown that
the Hamiltonian (2.1) with spin 1/2 can be analyzed by
several methods. Each of them has the potential of be-

7 More precisely, each ferromagnetic chain can be regarded
as one single spin with large S. It might therefore actually be
interesting to try to treat our second-order expression in J ′ in
three dimensions using spinwave techniques.

ing pushed further to obtain more accurate results. This
applies in particular to the weak-coupling approach: The
second order diverges for the three-chain model as L→ ∞,
but it remains to be investigated if it converges in three
dimensions. The computation of other quantities than just
the magnetization is also straightforward with each of the
methods used in the present paper.

Useful discussions with D.C. Cabra, T. Nikuni, I. Peschel,
P. Pujol, U. Schotte, H. Tanaka and M.E. Zhitomirsky are
gratefully acknowledged. We are indebted to the Max-Planck-
Institut für Mathematik, Bonn-Beuel and the C4 cluster of the
ETH for allocation of CPU time.

A Ising series

In this appendix we present explicit series in the Ising
anisotropy ∆−1.

For the 〈M〉 = 1/3 plateau in the three-chain model,
one finds the following sixth-order series for the gap of a
single spin flipped up

hc2 = ∆ (J ′ − J) + J + J ′2

{

1

4J
∆−1 +

5J ′ − 2J

16J2
∆−2

+
164J2J ′2 − 258J3J ′ + 276J4 − 93J ′3J + 19J ′4

192J3 (J ′ − J) (J ′ − 2J)
∆−3

+
∆−4

2304J4 (J ′ − J)
2
(J ′ − 2J)

2

(

19050J ′3J4

−8234J ′4J3 + 3297J ′5J2 − 27548J ′2J5

+20232J ′J6 − 1136J ′6J + 171J ′7 − 6480J7
)

+
∆−5

55296 (J ′ − 2J)
3
J5 (J ′ − 3J) (J ′ − 4J) (J ′ − J)

3

(

62217652J ′4J8 − 35026088J ′5J7

−76513096J ′3J9 + 65015952J ′2J10

+14995748J ′6J6 − 7562886J ′7J5

+8581J ′12 + 4998735J ′8J4 − 2554610J ′9J3

+783380J ′10J2 − 128008J ′11J

−35276256J11J ′ + 9134208J12
)

}

+O(∆−6) . (A.1)

For an excitation with a single spin flipped down one finds
instead the following sixth-order series

hc1 = ∆J − J +
J ′

2
− J ′2

{

2J ′ − 3J

16J2
∆−2

+
47J2J ′2 − 39J3J ′ + 30J4 − 25J ′3J + 5J ′4

64J3 (J ′ − J) (J ′ − 2J)
∆−3

+
∆−4

4608J4 (J ′ − J)
2
(J ′ − 2J)

2

(

24218J ′3J4
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−17776J ′4J3 + 10901J ′5J2 − 30028J ′2J5

+24264J ′J6 − 4054J ′6J + 611J ′7 − 8784J7
)

+
∆−5

110592 (J ′ − J)3 (J ′ − 4J) (J ′ − 3J)J5

×
1

(J ′ − 2J)
3
(2J ′ − 3J)

(

468904952J ′5J8

−400904412J ′6J7 − 488731468J ′4J9

+415953144J ′3J10 − 263997936J ′2J11

+309762362J ′7J6 − 199502115J ′8J5

−23421312J13 + 51214J ′13 + 111406752J12J ′

+97003020J ′9J4 − 32952968J ′10J3

+7259020J ′11J2 − 923565J ′12J
)

}

+O(∆−6) . (A.2)

In a similar way, one obtains the following fourth-order
series for the single-spin excitation above 〈M〉 = 1/3 in the
three-dimensional model

hc1 = J∆+
3J ′

2
− J

+
3J ′3

(

9JJ ′ − 10J2 + 10J ′2
)

8∆ (J ′ − J) (3J ′ − 2J) (2J ′ − J) (J ′ − 2J)

−
3J ′2

32∆2 (J ′ − 2J)2 (2J ′ − J)2 (3J ′ − 2J) (J ′ − J)2
(

292J ′6 − 900JJ ′5 + 1203J2J ′4 − 1222J3J ′3

+896J4J ′2 − 344J5J ′ + 48J6
)

+
J ′2

256∆3

(

3696796800J ′18 − 5988208896J ′3J15

+4368432498318J ′12J6 − 3140479722337J ′13J5

−3154044909140J ′9J9 − 41660867520J ′17J

+30196054016J ′4J14 + 221631078840J ′16J2

−117183492672J ′5J13 − 742570973868J ′15J3

+362869230400J ′6J12 + 1760559743358J ′14J4

−912414730048J ′7J11 + 1875316243840J ′8J10

+4333067026982J ′10J8 − 4842206323349J ′11J7

+854889984J ′2J16 − 77524992J17J ′ + 3317760J18
)

×

{

(J ′ − J)
3
(3J ′ − 2J)

3
(2J ′ − J)

3
(J ′ − 2J)

3

(3J ′ − 4J) (5J ′ − 4J) (4J ′ − 3J) (5J ′ − 3J)

(4J ′ − J) (3J ′ − J) (5J ′ − 2J)

}−1

+ O(∆−4) , (A.3)

and

hc2 = (3J ′ − J)∆+ J −
3J ′2

(

6J2 − 11JJ ′ + 10J ′2
)

4∆ (J ′ − J) (2J ′ − J) (J ′ − 2J)

+
3J ′2

(

50J ′3 − 37JJ ′2 − 12J2J ′ + 12J3
)

16∆2 (J ′ − 2J) (2J ′ − J) (J ′ − J)
2

+
J ′2

64∆3

(

13530240J ′15 + 80661600J ′2J13

−5086562914J ′9J6 + 1224415456J ′4J11

−2716474016J ′5J10 + 4432214446J ′6J9

−387107136J ′3J12 − 5597333776J ′7J8

+5797552217J ′8J7 + 3611625955J ′10J5

−1800747488J ′11J4 + 447946876J ′12J3

+60036504J ′13J2 − 70410816J ′14J

−9897984J14J ′ + 539136J15
)

×

{

(J ′ − 2J)
3
(J ′ − J)

3
(3J ′ − 2J) (3J ′ − 4J)

(5J ′ − 4J) (4J ′ − 3J) (2J ′ − J)
3
(3J ′ − J)

(5J ′ − 3J) (4J ′ − J)

}−1

+O(∆−4) . (A.4)

The results (A.3,A.4) are consistent with earlier ones. Firstly,
for J = 0, one recovers the series for the triangular lat-
tice [21]. For general J < 0 also (A.1) and (A.2) match
with (A.4) and (A.3), respectively up to first order in J ′

(one just has to rescale J ′ by a factor 3 to account for the
different coordination number).

B Details of the DMRG procedure

Following the standard infinite-size algorithm of the DMRG
method [11], we enlarge the chain in each iteration step by
two triangles (in total six spin-1/2 sites), i.e. by 8×8 = 64
states. This is different from [26] where the totally antifer-
romagnetic case of the Hamiltonian (2.1) has been treated.
There, the chain was built up by adding a total of only two
spin-1/2 sites in each step, so that it took three DMRG
steps to add two complete triangles to the original lad-
der. In this procedure more truncation operations of the
Hilbert space had to be performed than in our calculation.
But by adding eight-state sites in each step the number of
basis states discarded in the truncation process is larger
than in the case where only two-state sites are added. As
far as we know it has not yet been tested which procedure
is more favourable.

In order to limit the computational effort, we applied
only the infinite-system algorithm even though more ac-
curate results could probably be obtained when one would
use in addition the finite-system algorithm. To calculate
the boundaries of the magnetization plateau we have used
spin conservation and performed three different calcula-
tions to target each of the groundstates with magnetiza-
tion 〈M〉 = 1/3−1/Stot, 1/3, 1/3+1/Stot separately. The
difference between the groundstate energy in the sector
〈M〉 = 1/3 and the energies in the neighbouring sectors



12 A. Honecker et al.: A Spin- 1
2
Model for CsCuCl3 in an External Magnetic Field

then gives the magnetic field:

hc1 = E0

(

〈M〉 = 1
3 + 1

Stot

, L
)

− E0

(

〈M〉 = 1
3 , L

)

(B.1)

hc2 = E0

(

〈M〉 = 1
3 , L

)

− E0

(

〈M〉 = 1
3 − 1

Stot

, L
)

.(B.2)

Fig. B.1 shows a typical spectrum of the eigenvalues
of the density matrix for such a calculation.
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Fig. B.1. Eigenvalue spectrum of the reduced density matrix
of a ladder with 24 spins (L = 8), calculated with 64 kept
states in the subspace 〈M〉 = 1/3. The couplings are J = −1,
J ′ = 1/3 and ∆ = 1

The eigenvalues drop exponentially as is known from
other quantum spin chains8 and thus gives rise to a very
small truncation error. On the other hand, we found that
at least 160 states of the density matrix, i.e. 1280 states
in one part of the chain had to be kept to obtain reliable
results up to three decimal places in the energy. The eigen-
values of the density matrix lie about three to four orders
of magnitude above the eigenvalues in the corresponding
spectrum [46] of the totally antiferromagnetic case studied
in [26]. This is one reason for the lower accuracy of our
DMRG calculations. There is also a big difference between
the truncation error and the real error in the groundstate
energy which indicates that the structure of the ground-
state could be approximated better by applying the finite-
system algorithm.
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Schotte, Phys. Rev. B54, (1996) 15924-15927.

38. U. Schotte, A. Kelnberger, N. Stüsser, J. Phys.: Condensed
Matter 10, (1998) 6391-6404.

39. S. Schmidt, B. Wolf, M. Sieling, S. Zvyagin, I. Kouroudis,
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