
W-Algebras in Conformal Field Theory
Proceedings of the workshop ‘Superstrings and Related Topics’,

Trieste, July 1993, eds. E. Gava, A. Masiero, K.S. Narain,
S. Randjbar-Daemi, Q. Shafi, World Scientific (1994) 435-445

A. Honecker
and

W. Eholzer, M. Flohr, R. Hübel, R. Varnhagen
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Abstract

Quantum W-algebras are defined and their relevance for conformal field theories

is outlined. We describe direct constructions of W-algebras using associativity re-
quirements. With this approach one explicitly obtains the first members of series of

W-algebras, including in particular ‘Casimir algebras’ (related to simple Lie alge-

bras) and extended symmetry algebras corresponding to special Virasoro-minimal
models. We also describe methods for the study of highest weight representations

of W-algebras. In some cases consistency of the corresponding quantum field the-

ory already imposes severe restrictions on the admitted representations, i.e. allows
to determine the field content. We conclude by reviewing known results on W-

algebras and RCFTs and show that most known rational conformal fields theories

can be described in terms of Casimir algebras although on the level of W-algebras
exotic phenomena occur.

1. Introduction

The aim of this talk is to summarize briefly known facts about W-algebras and
the corresponding rational conformal field theories (RCFTs). Much more detailed
reviews on this subject exist (see e.g. 1) which we also recommend for further
references. This talk is based on our efforts to find all W-algebras with few fields
of low conformal dimension and to fit them into the known patterns.

Virasoro minimal models have c < 1 2. But in statistical mechanics second order
phase transitions are known which exhibit conformal invariance and lead to rational
conformal field theories with c > 1. One class of examples are the Zk-parafermions 3.
Also in string theory one needs c > 1. Very important applications require N = 2
supersymmetric rational conformal field theories (RCFTs) with c = 9 4.

Consequently, the classification of all RCFTs is a natural question. Since RCFTs
with c > 1 can be constructed using W-algebras one may expect that W-algebras
play a major rôle in this classification program.

Anyhow, one important motivation for the study ofW-algebras certainly is that
W-algebras have a very rich mathematical structure, their complete classification
still being an open problem.
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2. Basic Results on Virasoro Minimal Models

In this talk we restrict to the (left-)chiral part of the conformal field theory.

In our notations, the Virasoro algebra is given by

[Lm, Ln] = (n−m)Lm+n +
c

12
(n3 − n)δn,−m (1)

where we adopt non-standard sign conventions in order to have the ‘energy’ L0

bounded from below. Highest weight representations of the Virasoro algebra are
defined by a cyclic vector |h〉 with the following properties:

L0 |h〉 = h |h〉 , Ln |h〉 = 0 ∀n < 0. (2)

The irreducible representation modules are:

M(c, h) :=
span{Lnk . . . Ln1

|h〉 | nk ≥ nk−1 ≥ . . . n1 > 0}
{maximal proper submodule}

(3)

where the maximal proper submodule depends on h and c. One particular repre-
sentation is the ‘vacuum representation’:

Ln|v〉 = 0 ∀n < 2 (4)

In the seminal work of BPZ in 1984 it was shown that in certain cases one can
solve the field theory completely 2. These so-called ‘minimal models’ are related to
completely degenerate representations which are given by

c = 1− 6
(p− q)2

pq
(5a)

h(p, q; r, s) =
(pr − qs)2 − (p− q)2

4pq
, 1 ≤ r ≤ q − 1 , 1 ≤ s ≤ p− 1 . (5b)

with p, q coprime integers. For the irreducible representation modules M(c, h) one
defines characters by:

χh(τ) := trM(c,h)

(
e2πi(L0− c

24 )τ
)
. (6)

One important tool is the modular group PSL(2,Z) generated by:

T : τ 7→ τ + 1 , S : τ 7→ −1

τ
. (7)

The characters (6) carry a natural representation of the modular group. The models
(5) are rational in the sense that the representation of the modular group (7) on
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the characters (6) is finite dimensional. We will regard the property that characters
form a finite dimensional representation of the modular group as a definition of
RCFTs. In particular, the partition function

Z(τ) :=
∑
i,j

Ni,jχ
∗
hi(τ)χhj (τ) (8)

of the complete theory is modular invariant if the integers are chosen appropriately.
The ‘diagonal’ choice Ni,j ∼ δi,j is always a solution. For a rational conformal
field theory, the operator product expansion (OPE) of fields in the complete theory
closes in finitely many families.

3. Definition of W-Algebras

The Virasoro algebra has only rational models for c < 1 (see Eq. (5a) ), even
ceff = c − 24hmin = 1 − 6

pq < 1. As we mentioned in the introduction applications
also need rational conformal field theories with c > 1. One class of examples
are particular 2D k-states spin models, the so-called Zk parafermions which were
shown in 1985 by Fateev and Zamolodchikov to give rise to conformal field theories
with c = 2k−2

k+2 describing their second order phase transition 3. Already in this
construction, additional operators were introduced which mapped between different
representation modules Eq. (3), or equivalently comprised several conformal families
into a single one. If one can thus combine infinitely many conformal families into a
single family one may hope to describe the field theory with finitely many of these
bigger families. The original approach used chirally non-local fields. However, one
would like to use better behaved chiral fields for such a mapping: The ‘primary’
local chiral fields. This leads to the definition of a W-algebra. The first examples
were constructed by Zamolodchikov in 1986 5 which initiated a detailed study where
also the Zk parafermions found a new explanation as unitary minimal models of
certain W-algebras.

A local chiral primary field φ(z) =
∑
n−d(φ)∈Z φnz

n−d(φ) of conformal dimension

d(φ) ∈ Z+

2 is characterized by the commutator of its modes with the Virasoro algebra
Eq. (1):

[Lm, φn] = (n− (d(φ)− 1)m)φn+m. (9)

W-algebras encode properties of conformal field theory algebraically. A derivative
∂ is naturally defined in the space of fields. Furthermore, the singular part of the
OPE of two fields gives rise to a Lie bracket of their modes whereas the regular
part of the OPE leads to some standard normal ordering prescription N(φ, ψ) of
two fields φ and ψ.

One of the first observations is that the commutator does not close in primary
fields Eq. (9) only. Therefore, one is forced to introduce more general, so-called
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‘quasi-primary’ fields. Iff a field φ satisfies Eq. (9) for m ∈ {−1, 0, 1} this field is
called quasi-primary.

Using conformal covariance one can deduce a general formula for the commuta-
tor of the modes of two quasi-primary local chiral fields 6:

[φ(i)
m , φ(j)

n ] = dij δn,−m

(
n+ d(φ(i))− 1

2d(φ(i))− 1

)
+

∑
k∈I

d(φ(k))<d(φ(i))+d(φ(j))

Ckij pijk(m,n)φ
(k)
m+n.

(10)
The universal polynomials pijk depend only on the conformal dimensions d(φ(i)),
d(φ(j)) and d(φ(k)) and are known explicitly 6−9. The structure constants Ckij and

dij are characteristic for the fields involved (φ(i), φ(j) and φ(k)). They are algebraic
functions of the central charge c. If one requires the existence of a vacuum vector
|v〉 satisfying

φn|v〉 = 0 ∀n < d(φ) (11)

the structure constants Ckij and dij can be expressed in terms of the three- and two-

point functions Cijk = 〈v|φ(k)

−d(φ(k))
φ

(i)

d(φ(k))−d(φ(j))
φ

(j)

d(φ(j))
|v〉 and dij = 〈v|φ(i)

−d(φ(i))

φ
(j)

d(φ(j))
|v〉 with

∑
k dlkC

k
ij = Cijl. Thus, one is in principle able to calculate struc-

ture constants for composite fields.
The normal ordering prescription can be used to write down a convenient basis

for the space of fields. However, the commutator formula is valid only for quasi-
primary fields but the naive normal ordered product N(φ(i), ∂nφ(j)) is usually not
quasi-primary. Therefore, we add correction terms and define a quasi-primary nor-
mal ordering prescription N 6:

N (φ(i), ∂nφ(j)) := N(φ(i), ∂nφ(j))−
n∑
r=1

αrij ∂
rN(φ(j), ∂n−rφ(i))

−
∑
k

βkij(n) Ckij ∂
h(ijk)−nφ(k)

(12)

yielding a field of dimension d(φ(i))+d(φ(j))+n. Again the αrij and βkij(n) are some

universal, explicitly known polynomials in the dimensions of φ(i) and φ(j) as well as
n, r and k 6,8. The exponent h(ijk) is fixed to give the correct scaling dimension.

The algebra generated by finitely many simple (i.e. non-composite) fields
φ(1), . . . , φ(k) is called a ‘W(d(φ(1)), . . . , d(φ(k)))’.

Apart from the energy-momentum tensor L all simple fields are primary.
When performing explicit constructions one gives as input the dimensions of the

simple fields. All structure constants can be expressed in terms of those connecting
three simple fields and the central element c. The structure constants involving
three simple fields and possibly c are fixed by checking the validity of the Jacobi
identity for all simple fields.
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It may turn out that for given simple fields there is no solution at all, there can
be solutions for particular discrete values of the central charge c or the central charge
is not restriced by the Jacobi identities. In some examples, one finds even several
generically existingW-algebras with the same dimensions of the simple fields. Thus,
our notation of a W-algebra is not always unique.

Example: W(2, 3)

In our notation Zamolodchikov’s W(2, 3) 5 is given by the following commutation
relations of the simple fields L and W :

[Lm, Ln] = (n−m)Lm+n +
c

12
(n3 − n) δn,−m

[Lm,Wn] = (n− 2m)Wm+n

[Wm,Wn] = CLWW p332(m,n)Lm+n + CΛ
WW p334(m,n) Λm+n +

c

3

(
n+ 2

5

)
δn,−m ,

(13)
where

Λ = N (L,L) = N(L,L)− 3

10
∂2L (14a)

CLWW = 2, CΛ
WW =

32

5c+ 22
(14b)

p334(m,n) =
n−m

2
, p332(m,n) =

n−m
60

(2m2 −mn+ 2n2 − 8) . (14c)

Note that the structure constants Eq. (14b) and the polynomials Eq. (14c) are fixed
by the conformal symmetry up to normalization. Validity of the Jacobi identity is
then automatically ensured by the universal polynomials. This is a very special
property of W(2, 3) – in general Jacobi identities do yield non-trivial restrictions.

The appearance of the field Λ clearly shows the non-linear structure of this algebra.
The commutator of this spin 4 field with itself will involve fields of higher dimension
and so on.

3. Representations of W-Algebras

Representations of W-algebras can be defined along the same lines as those of the
Virasoro algebra naturally generalizing Eqs. (2), (3) and (6). A highest weight
vector |h,w〉 for a representation satisfies

φn |h,w〉 = 0 ∀n < 0 (15)

for all fields φ. Furthermore, the representation of the zero modes φ0 of all fields
φ is required to be irreducible. Quite often, one can assume the L0-eigenspace of
minimal energy to be one-dimensional.
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There are two approaches to the explicit study of HWRs of W-algebras. Both
are based on natural requirements on a field theory. First, fields that vanish in the
vacuum representation –so-called ‘null fields’– should vanish everywhere. Second,
evaluation of any correlation function should not depend on the actual order of
evaluation. It is surprising to note that the second approach yields any restrictions
at all and thus in some cases completely fixes the field content of the theory 10.
However, this works only for isolated values of the central charge c, i.e. mainly for
those W-algebras existing only for c discrete. For algebras existing at c generic one
usually has to rely on the study of null fields.

For RCFTs it turns out that an important quantity is the effective central charge

ceff := c− 24hmin (16)

where hmin is the smallest of all h-values. For unitary theories ceff equals c because
hmin = 0.

Example: W(2, 3)

For W(2, 3) the highest weight vector |h,w〉 satisfies

L0 |h,w〉 = h |h,w〉 , W0 |h,w〉 = w |h,w〉 . (17)

Here, the associativity requirement yields no restrictions on h, w and one has to
study null fields. This can be done explicitly for a few values of the central charge.

For c = 4
5 one obtains h ∈ {0, 2

3 ,
2
5 ,

1
15} with fixed corresponding w. This are

precisely the Z3-parafermions. Of course, this model is already Virasoro-minimal.
At c = −2 one can explicitly examine null fields as well. Here, all conditions

that have been studied are satisfied for all (h,w) which obey the following relation

w2 =
2

27
(8h+ 1)h2. (18)

Thus, the CFT at c = −2 is most probably only degenerate but not rational with
respect to W(2, 3).

4. First Results on the Classification of RCFTs

A few very simple statements about RCFTs have been proven so far. All proofs
strongly rely on modular invariance.

The first statement is that RCFTs necessarily involve rational central charge c
and rational conformal dimensions h 11,12.

Another important result is that all RCFTs with ceff < 1 can be understood
in terms of characters of the Virasoro-algebra Eq. (6). Of course, this does not
exclude that they might also have larger symmetry algebras. The proof uses the
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known representation theory of the Virasoro algebra contained in anyW-algebra in
order to write down a lower bound for Fourier coefficients of the characters if c < 1.
If the model is not Virasoro-minimal the asymptotic behavior of the characters
implies ceff ≥ 1.

Also the RCFTs with ceff = 1 are completely classified 13−15. Here, one needs
non-trivial extensions of the Virasoro algebra. This classification uses a theorem of
Serre-Stark.

For ceff > 1 one definitely needs extended symmetry algebras in order to obtain
RCFTs. A more precise statement is 16,17: All rational models of a bosonic W-
algebra with k simple fields satisfy ceff < k. The proof is elementary and based on
character asymptotics.

Another recent result is the classification of c = ceff = 24 RCFTs with only
1 character 18. Only for c ≡ 0 (mod 8) non-trivial one character theories are
possible. The classification of c = 8 and c = 16 theories is comparably simple. A.N.
Schellekens showed under the assumption of unitarity that at most 71 such models
can exist at c = 24 18, not all of which have been constructed explicitly so far. The
tedious though elementary proof again involves modular invariance. It uses Jacobi
forms instead of modular forms which take into account the additional quantum
numbers given by the zero modes of the currents.

For all RCFTs where the characters are known they are modular functions on
some congruence subgroup ΓN . The level N is the smallest integer such that TN

acts trivially on the characters. Probably, this is true for all RCFTs.

5. Known Series of W-Algebras

In this section we present general construction principles for W-algebras which
predict complete ‘series’ with infinitely many members.

c Generic

• Kac-Moody algebras consist exclusively of currents (spin 1 fields). They are
loop algebras over (simple) Lie algebras G. For them the energy-momentum
tensor L is composite and given by the Sugawara formula, i.e. as a quadratic
form in terms of the currents.
• WGS -algebras obtained by Drinfeld-Sokolov reduction (for the classical case see 19

and for the quantization 20). These algebras are constructed applying Hamil-
tonian reduction to Kac-Moody algebras associated to G. The construction
involves an embedding of S = SL(2,R) into G which determines the spin of the
simple fields.
These algebras have certain good properties; for example they do not contain
null fields for generic values of c. It is probably possible to show that all algebras
with these good properties can be obtained by the Drinfeld-Sokolov mechanism
because to any such algebra a Lie algebra G and an embedding S ⊂ G can be
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associated 21,9.

Historically, a subset of the WGS has been discovered first: The WG-algebras, or
so-called ‘Casimir’-algebras. In the Drinfeld-Sokolov framework such algebras
are given by the principal embedding S ⊂ G in a simple Lie algebra G. These
algebras can be realized in terms of free fields (or currents) using the Casimir
invariants of some simple Lie algebra G. For them, the dimension of the simple
fields is given by the order of the Casimir invariants of G. Examples include
in particular WAn−1

∼= W(2, 3, . . . , n). These algebras were some of the first
well understood ones 22−24. Originally, Hamiltonian reduction was discovered
for them in physical models like constrained WZNW models 25. The Casimir
algebras also arise as conserved currents of Toda field theories 26.

Kac, Wakimoto, Frenkel have used Drinfeld-Sokolov reductions for principal
embeddings in order to derive the minimal series of Casimir algebras from rep-
resentations of Kac-Moody algebras at fractional level 27.

• Orbifolds: If a W-algebra has outer automorphisms 28 one can project onto the
subspace invariant under the automorphism. For a finitely generatedW-algebra
the orbifold is usually also generated finitely with more generators and generic
nullfields. E.g. the Z2-orbifold ofW(2, 3) generically is aW(2, 6, 8, 10, 12) where
the first generic null field occurs at dimension 16.

• Products: One can always take the tensor product of two RCFTs. On the level
of algebras this is a complicated ‘sum’. In particular, one has to take care of the
energy-momentum tensor L and the central extension c. For example, a W(2n)
can always be obtained summing n copies of the Virasoro algebra.

• Commutants: If a W-algebra has another W-algebra as subalgebra (e.g. some
residual currents) one can consider the commutant of this subalgebra giving rise
to another W-algebra. For particular situations, this is the so-called ‘Coset-
construction’ 29 where one usually puts the emphasis on the inherited represen-
tations.

c Discrete

Most of the results for discrete c have been discovered by performing explicit con-
structions ofW-algebras. An exhaustive search was performed forW(2, δ)-algebras
with δ ≤ 11 8,30,31.

• Virasoro-minimal models sometimes also possess extended symmetries. For all
non-diagonal partition functions in the ADE-classification of modular invariant
partition functions 32 a W(2, δ)-algebra diagonalizing it exists 10,17.

• The classification of c = 24 modular invariant partition functions 18 also gives
rise to W-algebras. E.g. the symmetry algebra of the CFT invariant under the
monster is a W(2196884, 321296876) – a surprisingly small algebra compared to
the order of the Monster.
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• Also the c = 1 classification of modular invariant partition functions 13,14 pre-
dicts W-algebras: It predicts a W(2, 4, δ) for arbitrary dimension δ and the
algebras W(2, 16), W(2, 9, 16), W(2, 36) at c = 1.
• W(2, δ)-algebras existing for c = 1− 8δ or c = 1− 3δ complete the classification

of ceff = 1 RCFTs 15.
• W(2, δn) algebras with odd n can be constructed from Virasoro-degenerate mod-

els at c = c1,q
33. The rationality of these models is still an open question. The

models are certainly not rational but only degenerate for n = 1.

6. Known Exotic Constructions

All known exotic constructions have been found by explicit construction.

c Generic

One solution each toW(2, 4, 6) 30 andW(2, 3, 4, 5) 34 are still not understood. Both
examples exist for c generic and generically have null fields. In the case ofW(2, 4, 6)
known constructions including orbifolds have been carefully ruled out 31. It has been
proposed recently that one could identify this solution for W(2, 4, 6) as WD−1

35

but it is only a very formal continuation of the WDn-series at the moment. All
minimal models of this W(2, 4, 6) are conjectured to be isomorphic to a minimal
model of some WBm or WCm 36.

c Discrete

• W(2, δ)-algebras existing for irrational values of the central charge 8,30. Here,
no restrictions on the HWRs can be deduced 17. Examples include W(2, 5) at
c = 134± 60

√
5 and W(2, 8) at c = 350± 252

√
2.

• W-algebras existing for rational values of the central charge 8,30 but giving rise
only to degenerate models, not to rational ones 17. Here, examples include
W(2, 8) at c = − 1015

2 .
• W(2, 8) at c = − 712

7
8 belongs to the minimal series of WE8. At this particular

value of the central charge WE8 presumably truncates to W(2, 8).
For this rational model with 15 representations also an exotic construction using
the Z5-parafermions and two copies of the Virasoro-minimal model at c = c2,7
was found 17. The identification works for the characters; for the partition
functions it reads

Z =
1

2

(
ZP + (ZVir)2

)
. (19)

• The rational model of W(2, 8) at c = − 3164
23 occurs in the minimal series of

WE7, the Casimir algebra probably again truncating to a W(2, 8).
As this rational model has 22 representations and all h’s have denominator 23
it was natural to assume also a direct connection to Γ23

17. However, it was a
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major effort to write down the characters as modular functions on Γ23
37. The

same construction also works forW(2, 4) at c = − 444
11 andW(2, 6) at c = − 1420

17 .
These examples cannot be continued to a series.

7. Outlook

W-algebras including fermionic fields can be treated along the same lines. Then one
needs straightforward generalizations like super Lie brackets. In particular, N = 1-
and N = 2-super W-algebras have been investigated 38−40. For N = 1 38,39 the
picture is similar to N = 0 whereas for N = 2 40 unitarity seems to play a much
more fundamental rôle.

All known RCFTs fit into one of the series of section 5. Thus, the exotic
examples we presented in section 6 could be irrelevant for the classification problem
of RCFTs.
The mathematical structure of W-algebras is very rich. Due to the known and not
yet well understood exotic constructions the classification problem for them is still
open. This situation is similar to many fields in mathematics before a classification
had been achieved, e.g. simple finite groups.

For physical applications a major important open question remains a geometrical
interpretation of W-transformations.
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A7 (1992) 7841
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