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Abstract

The massive high-temperature phase of the chiral Potts quantum chain is studied using
perturbative methods. For the Zj3-chain we present high-temperature expansions for the
groundstate energy and the dispersion relations of the two single-particle states as well
as two-particle states at general values of the parameters. We also present a perturbative
argument showing that a large class of massive Z,-spin quantum chains have quasiparticle
spectra with n — 1 fundamental particles. It is known from earlier investigations that
—at special values of the parameters— some of the fundamental particles exist only for
limited ranges of the momentum. In these regimes our argument is not rigorous as one
can conclude from a discussion of the radius of convergence of the perturbation series.

We also derive correlation functions from a perturbative evaluation of the groundstate for
the Zs-chain. In addition to an exponential decay we observe an oscillating contribution.
The oscillation length seems to be related to the asymmetry of the dispersion relations.
We show that this relation is exact at special values of the parameters for general Z,, using
a form factor expansion.
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1. Introduction

In this paper we discuss the chiral Potts model in its spin quantum chain formulation. The
first chiral Potts model that was introduced in 1981 by Ostlund in order to describe incom-
mensurate phases of physisorbed systems [1] was a classical 2D spin model. The associated
quantum chain Hamiltonians were obtained in 1981-82 by Rittenberg et al. [2][3]. Because
this chain was not self-dual the location of the critical manifold was difficult. In 1983,
Howes, Kadanoff and denNijs introduced a self-dual Zs-symmetric chiral quantum chain
[4], which however, does not correspond to a two-dimensional model with positive Boltz-
mann weights. Soon afterwards, von Gehlen and Rittenberg noticed that the remarkable
property of the first gap of this model being linear in the inverse temperature also applies
to the second gap and can be generalized to arbitrary Z,, [5]. Furthermore, the authors of
[5] showed that the Ising-like form of the eigenvalues is related to this Z,-Hamiltonian sat-
isfying the Dolan-Grady integrability condition [6] — or equivalently [7] Onsager’s algebra
[8]. It was then shown by Au-Yang, Baxter, McCoy, Perk et al. that this integrability prop-
erty — nowadays called ‘superintegrability’ — can be implemented in a 2D classical model
with Boltzmann weights defined on higher genus Riemann surfaces that satisfy a general-
ized Yang-Baxter relation. In the sequel the chiral Potts model attracted much attention
because of these mathematical aspects, i.e. on the one hand the generalized Yang-Baxter
relations [9 — 17] and on the other hand because of Onsager’s algebra [7][18 — 21]. In this
paper we present new results showing that the model is also ‘physically’ very interesting
although it is not directly related to a realistic 2D physisorbed system.

Our observations will apply to general Z,,-spin quantum chains: The superintegrable Z,,-
chiral Potts quantum chains can be generalized (not necessarily demanding integrability)
to include further known integrable models, in particular the conformally invariant models
of Fateev and Zamolodchikov with WA, _i-symmetry [22 — 25]. Recently, Cardy intro-
duced an integrable chiral perturbation of these models [26]. The Z,-spin quantum chains
describe both this perturbation as well as the integrable thermal perturbations of the
conformal field theories (see e.g. [27 — 31]).

In previous papers we provided numerical evidence that the low-lying excitations in the
zero momentum sectors can be explained in terms of n — 1 fundamental particles for
n = 3, 4 at general values of the parameters [32][33] and checked for n = 3 that this
quasiparticle picture extends to general momenta [34]. For the superintegrable Zj-chiral
Potts model McCoy et al. have derived a quasiparticle picture of the complete spectrum
using Bethe ansatz techniques [35]. Recently, they argued that this quasiparticle picture
should in general be valid for the integrable Zs-chiral Potts quantum chain [36]. In this
paper we will show that both results can be combined into the general statement that the
massive high-temperature phases of general chiral Potts quantum chains have quasiparticle
spectra. In fact, this quasiparticle picture will in certain cases give small corrections to
the additivity of energy in the momentum zero sectors observed in [32].

The massive low-temperature phases of the Z,-spin quantum chains exhibit spectra that
are dual to those in the high-temperature phases, the main difference being that the role
of charge and boundary conditions is interchanged [37]. Therefore, our results about the
massive high-temperature phase can be transferred to the massive low-temperature phase
using duality.



In this paper we also use perturbation series in order to continue the systematic study of
correlation functions which has been started in [33][34][37]. We pay special attention to the
oscillatory behaviour which is also present in the massive phases and show how it can be
related to the parity violation of the excitation spectrum via a form factor decomposition.

The outline of this paper is as follows. In section 2 we recall some well-known facts
about the chiral Potts quantum chain and introduce basic notions. Section 3 presents
a short summary of perturbation theory which is applied in section 4 to the dispersion
relations of the lowest excitations of the Z;-chain. In section 5 we derive the main statement
of our paper: The quasiparticle structure of the massive high-temperature phase. Details
of the proof are shifted to an appendix. This argument can also be used in order to obtain
some control on the finite-size effects. In section 6 we apply perturbation expansions
and form factor decompositions to the correlation functions, our main interest being the
oscillatory contribution. Then we specialize to vanishing chiral angles and discuss some of
the results obtained previously in more detail. The final section 8 where we discuss the
radius of convergence of the perturbation series completes our investigation.

2. The chiral Potts quantum chain

This section summarizes well-known basic facts about Z,-spin quantum chains. We also
introduce some notions that will be useful later on. For more details see e.g. the review

[38].
A general Z,-spin quantum chain with N sites is defined by the Hamiltonian:

N n—1
HY = -3"N agob + hapDErnof 4 Aag=hzn ok, (2.1)

j=1 k=1

For reasons to be explained below we will in all subsequent sections set A= 0, i.e. we will
neglect the extra term in (2.1) introduced in ref. [21] and will consider

N n-—1
HY = }:}: arot + N DEToF (2.2)
: k=1

instead. o, I'; and =; freely generate a finite dimensional associative algebra with invo-
lution by the following relations (1 < 7,1 < N):

6,
0;0] =005, ajl“lzl“,ajw gl ,
. — . n n_—-n_ (=177 —
I,Iy=0T,, o= r_uf4ﬂn)_n
- = - = é
=iz =2iT;, oo = Zojwiit =;I AL (2.3)
_,_/
n operators
+ _ _n—1 + _ pn-—1 :—1— _ ':1?—1
ol =0, rr=r;—, = =Z;

27w

where w is the primitive nth root of unity w = e . In the following we will consider only

periodic boundary conditions for H](V ), re. Pyypq =T74.
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The Hamiltonian (2.1) contains 3n — 1 parameters: The temperature-like parameters A and

A which we choose to be real and the complex constants ag, ap and d&y. H](Vn) 1s hermitean
iftap=a)_,, ar=a)_, and ap = a)_,.

The algebra (2.3) is conveniently represented in

Hy =C"eC"®...0C" (2.4)

N times

labeling the standard basis of C" by {eq,...,en—1}. Then a basis for (2.4) is given by:
|i1...iN> = B¥...0¢€iy , Ogijgn—l. (25)

Now the following operation in the space (2.4) is a faithful irreducible representation r of

the algebra (2.3):

r(Dj) |1 .. iy in) =lir...(i; + 1 mod n)...iy) ,

iv) = 4 Tl G A D)y, < =
NET U 1 i, ifij=n—1.

(2.6)

r(Z5) it i ...

The involution is the adjoint operation with respect to the standard scalar product in the
tensor product of C".

The Hamiltonian (2.1) commutes with the Z, charge operator Q := Hjil oj acting
on the vectors (2.5) as

N

HQ) liv- i) =0 i) iy i) 2.7

which shows that the eigenvalues of Q have the form w® with Q integer. Thus, H](Vn) has
n charge sectors which we shall refer to by @ =0, ..., n— 1.

H](Vn) also commutes with the translation operator T that acts on the basis vectors
(2.5) in the following way:

r(Tw) [itdz ... in) =|iz...ini1). (2.8)

The eigenvalues of T are Nth roots of unity. We label them by e'¥ and call P the
‘momentum’. We choose 0 < P < 27 corresponding to the first Brillouin zone and have

P € {0, %T, - 277(%_1)}. Note that the states

li1iz .. in—1iN) p = —( li102 .. iN—1IN) + P lini1le . cin—1) + ...

VN

(2.9)
e PN G, z’N_liNi1>>

are eigenstates of Ty with eigenvalue ¢'”. A is a suitable normalization constant. If the
state |iy...ix) has no symmetry (i.e. TX |7y ...in) #]41...1n) for all 0 < k < N), one
has V' = N. This will apply to most cases below where we need (2.9).

3



In this paper we will use the following parametrization of the constants a; and ay,
fixing their dependence on k:

pid (3 —1) piv( 3 —1)
op = W , ap = W (2.10)
This is a suitable choice because it includes a large class of interesting models.
For ¢ = ¢ = 0 one obtains real o = ap = ﬁ This leads to models with a second

order phase transition at A = 1 which can be described by a parafermionic conformal field
theory in the limit N — oo at criticality [22][23]. These so-called Fateev-Zamolodchikov-
models [24] lead to extended conformal algebras WA, _1 where the simple fields have
conformal dimension 2, ..., n for generic values of the central charge ¢ [25]. The spectrum
of the Hamiltonian (2.2) can be described by the first unitary minimal model of the alge-
bra WA, _1. For n = 3 the symmetry algebra is Zamolodchikov’s well-known spin-three

extended conformal algebra [39] at ¢ = %.

Choosing ¢ = ¢ = § in (2.10) for the Hamiltonian (2.2) yields the superintegrable chiral
Potts model. For n = 3 such complex parameters in a spin chain Hamiltonian were first
investigated in detail by Howes, Kadanoff and denNijs [4]. The integrability of this chain
was then recognized by von Gehlen and Rittenberg who also generalized it to higher Z,
[5]. More precisely, the authors of [5] showed that the Z,-Hamiltonian (2.2) with (2.10) at
¢ = ¢ = 7 is integrable for all values of the inverse temperature A using the Dolan-Grady
integrability condition [6]. This particular kind of integrability is called ‘superintegrability’
(note that this terminology is not used entirely consistent in the literature — in contrast
to us, some authors include the generalized Yang-Baxter relations in the notion of su-
perintegrability). Ahn et al. [21] showed that the Hamiltonian (2.1) is still integrable at
¢p=p=73for & =ap=a,=1—1icot %k and any A, A. Their argument used Onsager’s
algebra in order to construct an infinite set of commuting conserved charges. Note that the
Hamiltonian (2.1) subject to the above constraints is not superintegrable for general values
of the parameters. Anyway, one can introduce a further parameter A into (2.2) without
spoiling integrability 1).

The parametrization (2.10) also includes the family of integrable models discovered in
[9—14] which interpolates between the integrable casesat ¢ = ¢ =0, A = land ¢ = ¢ = 7.
The Hamiltonian (2.2) is integrable if one imposes the additional constraint

cosp = A\cos ¢ (2.11)

on the parametrization (2.10). For ¢ = ¢ = 0 this yields A = 1 — the conformally invariant
critical points. At ¢ = ¢ = 0, the Hamiltonian is self-dual, i.e. it is invariant under a

duality-transformation such that H](\?)(/\) o /\H](Vn)(/\_l). The Hamiltonian is also self-

dual on the superintegrable line ¢ = ¢ = 7. H](Vn) with the choices (2.10), (2.11) is in

Y Forn = 2 and \ = \ this gives rise to extra symmetries of the Hamiltonian —
one obtains an XY quantum chain [21] that is invariant under an additional global U(1)
symmetry group. However, one can easily check that for n > 2 the Hamiltonian (2.1) is
not invariant under any non-trivial change of bases I'; — al'; 4+ 0=;, =; — cI'; 4+ d=;.
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general not self-dual any more whereas particular choices yield a self-dual Hamiltonian.
If we choose for (2.10) ¢ = ¢ and neglect (2.11) H](Vn) will be self-dual again. Therefore
we choose to refer to (2.2) with (2.10) as the general ‘chiral Potts model’. We will not
consider the integrable case where the additional constraint (2.11) is satisfied in detail.

We will now explain why we are going to focus on the Hamiltonian (2.2) rather than
considering the more general case (2.1). For A = 0 (2.1) is just a different representation of
(2.2). Thus, although we will certainly obtain different numerical results, the main struc-
tures are unchanged by the extra term in (2.1). In this paper we will use for example pertur-
bation theory. The free part of the Hamiltonian Hy is the same in (2.2) and in (2.1): Hg =
— E]‘,k o?kaf. Only the potential V' is changed. For (2.2) we have V = — E]‘,k akafyglk

whereas for (2.1) we have an extra term V = _E]‘,k akfffyglk + hoAzkE";E;‘_:lk with

h := A7\, Obviously, the action of V and V on the eigenstates (2.9) of charge and
momentum is the same apart from different numerical constants. Furthermore, the extra
term in (2.1) spoils duality. Thus, we will not consider the Hamiltonian (2.1) explicitly any
more. It is always understood that our results apply to it with only minor modifications.
In particular, the quasiparticle picture we will derive for the Hamiltonian (2.2) will hold

for (2.1) as well.

Our main interest is the spectrum in the limit N — oo of H](Vn). Of course, we have
to specify how the limit is to be taken. In order to be able to study the spectrum in this

limit we concentrate on the N-dependence of the Hilbert spaces Hy = D(H](Vn)). Consider
the following embedding of Hilbert spaces:

Hy — Hur N <M

lite o in)) p s liteein 0...0 ) p. (2.12)
M—N times

This definition is motivated by the well-known fact that matrix elements of (2.2) in mo-
mentum space are almost independent of N. We will see in the following sections that this
definition is indeed useful.

Using the inclusion map (2.12) we can define the Hilbert space H as the closure of an
inductive limit

Ho={|) [IN: |2) € Hn). (2.13)

Furthermore, we shall not consider the limit of H](Vn) directly. Instead, we shall subtract
the groundstate energy EY; first and then consider the weak limit of the operator

AH( = HY - EQ 1. (2.14)

Similarly, we define T' to be the weak limit of Ty. For each finite N eqs. (2.7) and (2.9)

imply that the Hilbert space Hy is graded into charge and momentum eigenspaces:

n—1
Hy =P P H“ (2.15)

P Q=0

S



In the limit N — oo the grading (2.15) translates into the fact that AH(™ and T can be
written in terms of the same projection-valued measure {HS}:

n—1 n—1
T=> /e’P(“)dHff . AHM =) /AE(/,L)dHff (2.16)
Q=0 Q=0

with 0 < P(u) < 2w. The {Hg} can be thought of as infinite dimensional generalizations
of projection operators onto eigenspaces of charge ) and momentum P(u). Thus, (2.16)
is just the proper formulation of (2.15) in the infinite dimensional case. The existence of
the limits and projection valued measures in (2.16) is not at all obvious. However, this is
guaranteed by the quasiparticle picture whereof a proof is presented in appendix A.

The definition in (2.14) is motivated by the fact that the smallest eigenvalue of (2.2) has a
leading term proportional to N and the excitation spectrum usually is defined with respect

to this reference eigenvalue. With the definition (2.14) the Hamiltonian AH](Vn) is bounded
from below. This automatically yields an operator AH™ = lim AH](Vn) with positive

N—o0
spectrum and an eigenvector for eigenvalue 0. Note that this definition of the limit implies

that any point where at finite N eigenvalues exist that are arbitrarily close to it belongs
to the spectrum. In particular, the spectrum forms a closed set.

Before proceeding let us make a few further comments on our definition of the limit.

First note that H](Vn) is defined only on D(H](\?)) = Hy C H. Of course, we could extend it
linearly (e.g. by 0) to the complete Hilbert space H. However, it is easy to show that the
limit AH(" does not depend on the particular extension chosen as long as it is uniformly
bounded for all N. We will therefore not make use of any particular extension.

Secondly, it is convenient to let H](Vn) act on vectors in D(H](\?)) = Hn which corresponds

to choosing a particular representative for a vector in the Hilbert space H. This is useful
because H](Vn) naturally acts on chains of length N. However, such a vector always has
to be thought of as lying in ‘H and, in particular, in all Hy; with M > N. Although
the notation might propose this, a limit in the chain length never has to be applied to
momentum eigenstates. Of course, other states than (2.9) are not naturally embedded into
‘H and therefore have to be expanded in terms of them. This might lead to N-dependent
coefficients and a limit might have to be applied to the coefficients.

Finally, it is noteworthy that the Hilbert space H can be thought of as a kind of universal
tensor product. Any tensor product of spaces Hy and Hp; can be naturally identified
with Hytar: Hy @ Hy = Hygm. Therefore the definition (2.13) yields an object that
is closed with respect to taking tensor products. Note that we have chosen a particular
topology on ‘H which is not the one usually chosen on the tensor algebra of a vector space.
Still, this observation is useful to guarantee the completeness of the construction to be
presented in section 5.

3. Generalities about Perturbation Theory

In this section we review the general outline for perturbation theory to all orders as pre-
sented in [40] which directly applies to the degenerate case as well.
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The Hamiltonian (2.2) can be written as
H=Hy+ \V (3.1)

with Hy = — E * ozka , V== E] & oszkT]_H The eigenstates for Hy are obvious, thus
we have solved:

Hy |a) = E<°> la) . (3.2)

Now one can solve
H |a(A)) = By |a(N)) (3.3)
for small A as follows: Let g, be the projector onto the eigenspace of Ho with eigenvalue

E|El >) We can treat non-degenerate and degenerate perturbation theory alike if we choose
|a) such that

gV la) = B} |a) (3.4)

with a constant E|E11>), i.e. quy Vqpu) is to be chosen diagonal. One also needs a regularized

resolvent ¢(z) of Hy:
g9(z) = (L —gpy ) (z— Ho) ™", (3.5)

Then, the Wigner-Brillouin perturbation series

Epy =D NES . la() =)\ Jav) (36)
v=0 v=0
is given by the following recurrence relations [40]:
|a,0) =[a)
|a,v) =g<E|E;§>>{V|a,u—1 Zw- E“”} (3.7)

v+1
BT =(a| V]a,v).
Note that neither | a(\)) nor | a,v) are in general normalized although | a) must be
normalized to one. Observe that the derivation of (3.7) does not rely on H being hermitean.
Therefore, (3.7) may also be applied to diagonalizable but non-hermitean H.

The radius of convergence of the series (3.6) can be more easily discussed in a different
framework. Therefore, we postpone such a discussion to section 8.

There is one observation that makes explicit evaluation of high orders for the Z,-
Hamiltonian (2.2) possible. The energy-eigenvalues E,y of H](Vn) do depend on the chain
length N. However, for the low lying gaps AEy ?) of AH](Vn) (see (2.14) ) the coeflicients

for powers of A\ become independent of N up to order AN =2 (see e.g. [41]). Intuitively, this
can be inferred from the fact that (2.2) shows only nearest neighbour interaction and thus

%) This will apply precisely to the fundamental quasiparticle states to be discussed below.
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we need N — 1 powers in V' to bring us around a chain of length N. Smaller powers in V
(or \) do not feel that the length of the chain is finite.

4. High-temperature expansions

In this section we study the low lying levels in the spectrum of the Zj-chiral Potts model
perturbatively. In particular, we calculate the dispersion relations of the lowest excitations
in the charge sectors () = 1 and Q = 2. Some first results in this direction have been
presented in [32] for the self-dual version of this model. In this section we derive higher
orders and admit general ¢ # ¢ *). We also present some explicit results on the next
excitations.

Perturbation expansions had already been used in [4], and were again used e.g. in [42]
and [41] in order to obtain some results for spectra and order parameters on the superin-
tegrable line. Recently, low-temperature expansions have been applied in [37] to spectra
and correlation functions for general values of the parameters. Here, we focus on the
high-temperature regime.

For arbitrary n, N the groundstate of the Hamiltonian (2.2) in the limit A — 0 is
given by:
|GS) :=]0...0) (4.1)

provided that —F < ¢ < 7. For n = 3 (4.1) will be the groundstate for the larger range
—m < <7 and for n =4 (4.1) is the groundstate for _5% << 5?”.

The first excited states at A =0 for @) > 0 and arbitrary P are the states

1s9)) P :=11Q0...0) p (4.2)

in the range —7 < ¢ < 7. According to our definition of the space H in section 2, the

states (4.2) give rise to proper eigenstates in the limit of AH( . Thus, the corresponding
gaps AEg o(P) belong to the point spectrum of AH™.

More generally, we wish to argue later on that the complete spectrum can be explained
in terms of quasiparticles. At A = 0, a single-particle excitation corresponds to just one
flipped spin (4.2). Due to the absence of interactions k-particle states have k flipped spins
at A = 0. For A > 0 one would have to take the interactions into account using perturbation
theory. Although we are in general not able to perform such a computation directly, it
may still be suggestive to think in terms of such states. In fact, such a picture is quite
traditional (see e.g. [43]).

In the following we will use the abbreviations:

C := cos <§> , C := cos (77 ; 99) , R :=1-4C%, C, := cos (%) (4.3)

%) Note that the main limitation of the length of most of the series to be presented in
this section is that we explicitly keep the dependence on the parameters.
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For n = 3 we can calculate the groundstate energy per site eg which is defined by £ = Neg
perturbatively:
4 272 C3\3 \/3{1 4}A4+\/§c3{3 4

= — —(C — — _ = - /\5 /\6 )
©=="5 "3/ ovser Tsic e TR 81C2 \ac? R} + O
(4.4)

Eq. (4.4) is independent of the chain length N if N > 5. In order to convey some idea
of the quality of such an expansion we mention that for ¢ = ¢ = 7 and A = % the
difference between (4.4) and the result of a numerical diagonalization of the Hamiltonian
(2.2) performed with 12 sites is of magnitude 10™*. Further comments on the accuracy
of (4.4), in particular at the boundary of the phase, can be found in [37] where the same
expansion has been calculated for the massive low-temperature phase.

Furthermore, for n = 3 we obtain for the lowest ¢ = 1 gap and P = 0 using the states

(4.2):
AE; o(é,¢) = 4sin (%) RN {02 ~2 CQCirl}

V3 T svB| ¢
1] 40 G 3G 4G
3| cc C
ol é4+1+é4—1+é4+482+3+4é4—1282+9 (4.5)
27| V3Ce?  2v3CeC 2,/3C3 2\/3C3
1 Cy +1 Cy—2 }

+ A3

3o (52)C7  3sin (F22)07 | 3sin (722)C2

+O(N?).

AE; o(¢,p) is given by AE; o(¢,¢) = AEq o(—0, —¢).
For n = 3 and general P we obtain from the states (4.2) the following perturbation
expansion for the dispersion relation of the lowest () = 1 excitation:

— 4
Ei(P):=AE;o(P,¢,p) = 4sin (%) — /\ﬁ cos (P — g)
2 cos(P—|—23—¢>—|—1 cos<2P—%>—2
— )2 _ +
3v/3 C C
1 2 cos <2P + %) — 3cos <P — %) +2cos (3P — ¢) — 2Cs (4.6)
+ A’ —
93 C?
2 cos <2P—|— ?) 4+ 2 cos <P — ?) . CcoS <2P—|— ?) + 2 cos <P — ?) + G4
cC 2
+ O(/\4)
and the lowest () = 2 excitation is given by:
Eo(P) := AFEy (P, ¢, 0) = AE; o( P, —¢, —¢). (4.7)
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Eqgs. (4.6) and (4.7) have already been presented in [34] in a different form. Note that the
agreement of (4.6) and (4.7) with the results of a numerical diagonalization is usually good
as was discussed in detail in [34].

In the previous section we mentioned that the kth orders of (4.5) — (4.7) are independent
of N if N > k + 2. In particular, this implies the existence of the limits N — oo of (4.5)
and (4.6) if the perturbative series converge at all.

In the derivation of (4.6) we have not assumed that the Hamiltonian (2.2) is hermitean.
Thus, we may admit ¢ € C. We have checked in a few cases that results of a numerical
diagonalization at N = 12 sites are still in good agreement with (4.6) also for complex ¢.

We would like to mention that it is no problem to compute further orders of the series
(4.4), (4.5) and (4.6). In fact, we have indeed done so (see eq. (4.2.6) of [44] for the 7th
order result of (4.4) and eq. (4.2.7) of [44] for the 4th order contribution to (4.6)) but
refrain from presenting the results because the next orders are very complicated and not
relevant for our purposes.

Obviously, for ¢ = ¢ = 7 we have to perform degenerate perturbation theory. The
correct perturbative excited state for () = 2 and P = 0 is for odd N:

\/NZ_I_l(HQO...O»O—|—H110...0>>0—|—...H10...010...0>>o> (4.8a)

N-—-3
2

and for even N:

\/%(HQO...O}}O—|—HllO...O}}O—|—...H10...010 0>>0‘|’7H10 10...0>>0>.

X2 -1
(4.8b)
With this state we obtain for N > 9:

ABso (5.3) =4(1- ) +O(X) (49)

as expected. In fact (4.9) has been proven exactly [11] using different methods but previous
perturbative calculations were restricted to the non-degenerate case AE; g at ¢ = = 7.
This demonstrates the universality of the approach to perturbation expansions outlined in

section 3.

Also for the higher excitations we must apply degenerate perturbation theory. The
next simplest case are the states where two spins are different from zero. For general P,
—7 < ¢ < 7 the space of the excitation with one spin flipped into charge sector ) and
another one flipped into charge sector ), is spanned by the states

N—]_, lle%QQ,

3], #Q=q 10

1979 = Q1 0...0 Q20...0) 5. 1§j§{

J— 1 times

Obviously, we will have to consider two cases: Q1 # @2 and @1 = Q.
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Let us first consider @)1 # Q2. For n = 3 we can choose 1 = 1, Q3 = 2. Then we may
omit the upper indices of ¢ because they are uniquely fixed: ||¢;)) p := Ht}’z» p. Now, the
potential V' acts in the space (4.10) as:

2 - .
ar (V) p == = (7 E Pt ) p o+ 2c0s (£)e G D 12 o)
2 (e —i(2L
a(V)|lti) p =~ 7 <2 cos (£)e' G2 |[t1)) p + 2c0s (£)e 52 |1t 44) P>
l1<y<N-1
2 9 .
e(Vltv-1)p == == (2008 (B)e S+ 8ty )y p + D1 )

(4.11)
where ¢ is the projector onto the space (4.10). Although it is not difficult to diagonalize
(4.11) numerically for comparably long chains (e.g. N = 100), we did not succeed in
obtaining a closed expression for the eigenvalues or eigenvectors.

In the second case, i.e. Q) := )1 = @) introduce the abbreviation W by:

2o (5= (122 o)W oo P e 22

In the case of two identical excitations we will also have to distinguish between even and
odd momenta in terms of lattice sites. It is therefore convenient to introduce a further
abbreviation §5 encoding this distinction:

PN PN
, if — odd; 6N =1, if = even. (4.13)

2n ™

5N =
The action of the potential V now is

W) p = (T E 1) £)
_|_

Wut?@>>p=(ei%ut@;@>>p "—Htm») << [§] -1

T +99) Q.Q :
? = + tR- , f N odd;
R T Ao Sphore ) s (4.14)
[(¥]-1//F i5| N 0.0 ‘
’ < 2 )p+0p \/_6 Ht ) > , if N even
W]l Q Q>> < % (_1)613 Ht}Qv7_Q1 ) P> , 1f N odd,;
129y, = N1
S \/_ %HtQ 9 >> P, if N even.

At first sight (4.14) looks much more complicated than (4.11). This is however misleading
and the matrix W can be diagonalized explicitly. In order to do so, we exploit a connection
to graph theory (see e.g. [45]). In this section, we restrict to a graphical representation of
(4.11) and (4.14) — the calculation is spelled out in detail in appendix A of [44].

Each vector Ht]le’Q2>> p will be symbolized as a ‘o’ with the index written above. The

action of the potential V' is symbolized by lines, with the square of the matrix elements
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(up to an isomorphism presented in appendix A of [44]) attached to them. Assume first
that we could distinguish the two flips we make. Then the graphical representation for the
action of the potential V' (or W) would be

oo NS (Anly). (4.15)

Here ‘(L) denotes the incidence matrix derived from the Cartan matrix of a Lie algebra
L. However, the states Ht]fQ’Q» p and Ht%’?}}} p are proportional to each other and must

therefore be identified. Furthermore, it turns out that for IV even and % odd Ht%Q» p=20
2

vanishes identically. This already splits the graph (4.15) into two disjoint parts. Therefore,
a graphical representation of (4.14) is given by:

1 2 -2 5-1 N
W = e — e = <A1_1> for N even, o odd
2 T
) ) N-3 N-1
W =~ ofo ------ %f@ 1= <TN_1> for N odd (4.16)
N9 N4 X NP
W =~ i—% ------ ¢« — <B£> for N even, —— even.

1 1 2 2 27

Fortunately, all the graphs (4.16) have norm less or equal to 2 *). Because the eigenvalues
of such graphs are classified [45] we can derive the first order explicitly.

In the case of (4.11) the situation is different. In order to simplify the discussion
consider the case P = ¢ = 0. Then one can represent (4.11) as

Voo — e&——w»------ s . ..... . (417)

Note that instead of drawing a closed diagram we have represented part of it twice. It is
easy to see that the norm of (4.17) is larger than 3 (it tends to 4 for N — o0). The absence
of explicit expressions for the eigenvalues of such graphs prevented us from deriving an
explicit expression for the first order of two-particle states in the ¢) = 0 sector.

The result of the calculation in appendix A of [44] for the eigenvectors of the matrix
W as given by (4.14) is:

(11 |
2 [N~ o ((ZE=0B)iTm ipe
e = \/—N{ " ( ) I e
J=1
I —is([3]-1));2.Q
B e N ‘ es >>P}'

(4.18)

4) (Tx) is the Tadpole graph.
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The final result for the first order expansion of the energy for these excitations is for N > 3:

n—1 £ _ - i
) cos <P <1 2nQ> qb) cos <(2k_(s ) >
Zak(l _ka)> - 2 sin <%> N

AEyq k(P ¢, p) =2 (

k=1

N _
+ 0O\, 1<kg{%}.

(4.19)

For remarks on the second order see appendix A of [44].

5. Evidence for quasiparticle spectrum

In this section we present an argument using perturbation theory that the spectrum of
the Z,-Hamiltonian (2.2) can be interpreted in terms of quasiparticles for a wide range of
parameters. In the case of Zg, the dispersion relations of the two fundamental particles

with @ =1 and @ = 2 are given by (4.6) and (4.7).

The results in [32 — 36] suggest that we may expect a quasiparticle spectrum. More
precisely, all excitation energies AEg (P, ¢, ¢) should satisty

AEq. (P, ¢, ¢ Z Egu(P®), P=> P¥mod2r, Q=> Q¥ modn (5.1)
k=1 =

where E;(P),...,E,—1(P) are the energies of the n — 1 fundamental quasiparticles. Addi-
tionally, the fundamental quasiparticles seem to satisfy a Pauli principle, i.e. Q) = QW)
implies P() % PU) In particular, for n = 3, (4.6) and (4.7) are the dispersion relations of
the fundamental () = 1 and ) = 2 quasiparticles and all other states can be obtained by
composition under the assumption that energy, momentum and charge are additive.

It should be clear to the reader that a particle interpretation is not directly incorporated
into the Hamiltonian (2.2) neither is it related to any particular integrability properties
of the Hamiltonian. Even on the superintegrable line the derivation of (5.1) given in [35]
for n = 3 only yields the quasiparticle spectrum at the very end. This is due to the fact
that standard Bethe ansatz methods (which would automatically ensure a quasiparticle
spectrum) have failed for the integrable chiral Potts model such that functional relations
for the transfer matrix had to be used in order to determine the excitation spectrum (see
[35] and references therein). Instead of specializing to the integrable chiral Potts model
and using particular integrability properties we will argue below that the quasiparticle
interpretation (5.1) follows from the basic physical properties of finite correlation length
and absence of long-range order which are not related to integrability at all. Although
this is not a surprising observation, a rigorous derivation of (5.1) using this argument is to
the best of our knowledge not contained in the literature. This motivated us to spell this
argument out in more detail below as well as in appendix A.

Before presenting a proof of (5.1) we would like to add a remark on Figs. 2-4 of [34]:
In the limit N — oo the eigenvalues seem to become dense such that we may expect to
interpret the energy bands as continuous spectrum in the weak limit of the Hamiltonian.
Note that according to our definition, the single particle excitations (4.2) lead to point
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spectrum. One also observes that the energy bands are filled from the interior such that
their boundaries do not belong to the spectrum for any finite N. However, we have
pointed out in section 2 that the spectrum is closed in the infinite chain limit. Thus, the
boundaries of the energy bands will belong to the spectrum in this infinite N limit. It is
worthwhile noting that the normalization factors LN for the two-particle states in (4.18)
demonstrate that these states tend to zero for N — oo and will therefore not give rise to
proper eigenvectors. This confirms that with our definition of the limit composite particle
states belong to the continuous spectrum.

Before proceeding with the general discussion let us first look a little closer at the
two-particle states. Comparing (4.19) with the first order expansion for the single-particle
states eq. (39) of [32] one observes that this first order expansion of the two-particle
excitations is in agreement with the quasiparticle rule (5.1). Up to first order the composite
particle states satisfy either 2AEq o(P, ¢, ¢) < AEy9 (2P, ¢, ) < 2AEq o(P + 27, ¢, ¢)
or 2AEq o(P, ¢, ) > AEq k(2P ¢,¢) > 2AEqg o( P+27, ¢, ¢) depending on which one of
the single particle energies is larger. Thus, the two-particle states do indeed lie inside the
energy band of two single-particle states and the boundaries are not included. Even more,
we can see from (4.19) that the two-particle states become dense in this energy band for
N — oo.

Let us now present a more abstract argument which ensures the validity of (5.1). The
interaction in the Hamiltonian (2.1) is very short ranged — in fact, only among nearest
neighbours. In the massive high-temperature phase there is no spontaneous order and
the correlation length is finite. Thus, if one puts two excitations of ‘short’ chains with
a sufficient separation on a longer chain, the interaction will be negligible. For example,
putting one single-particle excitation one the left half of the chain and another on the right
half will approximate a two-particle excitation.

We make this derivation of the quasiparticle interpretation of the spectrum more precise
using perturbative arguments. According to the remarks at the beginning of section 4
the quasiparticle spectrum with flat dispersion curves is easily verified for A = 0. In this
section we sketch a proof that the quasiparticle picture remains valid for A > 0 — we just
present the main ideas. A modified rigorous version of the proof is spelled out in appendix

Al

First, we notice that

AH(Y = AHW 01+ 10 AHSY + O(AHN )

(5.2)
Tnem ={0+O(Tnm)} ITn @ Ty

where ‘O(Zn, )" denotes an operator acting only at sites 0, N —1, N and N4+ M —1. One
of the main steps of the proof is to show that these boundary operators vanish in the limit
N, M — oo. It should be clear to the reader that the coproduct rule (5.2) is going to be
crucial for the derivation of the quasiparticle picture (5.1). In particular, our proof cannot
be easily modified to accommodate more complicated selection rules and will therefore be
specific for Z,-spin quantum chains

If we can build a composite state of any two states we have to show that energy, charge and
momentum behave additive under this composition and that we can construct all states.
Then, the quasiparticle structure follows by induction.

14



Composite particle states are expected to give rise to continuous spectrum. This is a
technical complication in the argument we are going to give because it is not possible to
use eigenstates but we must show that the resolvent is unbounded. However, for each
finite N the Hamiltonian has a complete set of eigenstates. We have already argued in
section 2 that the resolvent becomes unbounded for any energy if it can be approximated
by eigenvalues of AH](Vn). This in turn can be ensured by providing a sequence of vectors

||k; E)) p that approximate eigenvectors of AH](Vn) to eigenvalue E for N large. Thus, we
would have to take two limits simultaneously. However, a standard argument shows that
it is no loss of generality to restrict to the diagonal sequence k = N.

The assumption in the induction is that we can choose two sequences of states ||N; Ey)) p €
Hy and ||M; Ey)) p, € Har such that in the weak limits of AH™ and T they give rise to

unbounded resolvents at Ey, e'f*:

lim (AHY — Ey) | N;Ey)) p, =0, lim (Ty — ™) |N; Eq)) p, =0,
lim (AH; — Ey) ||M; Ep)) p, =0, lim (T — ') || M; Ez)) p, = 0.
M —oo M —oo

We know that such sequences of states exist at least for the single-particle states — the
perturbative series for |[s?)) p.

The second major step in the proof is to consider now the state ||N; E1)) p @|[M; Eq)) p, €
Hn+nr. From (5.2) one has

AHGL IV ED) p @ |M; E)) ) =(AHY N E) p) © || M5 E) p,

NS B) by © (AHY M B)) )
+ O(AHN m)(IIN; Ev)) p, @ ||M; E2)) p,)
TIntm(IN; Ev)) p, @ | M5 Es)) p,) =(TN|IN; Ev)) p,) @ (Tu || M5 Es)) p,)
+ O(Tn,m)(IN|IN; Ev)) p,) @ (Tar|| M Ey)) p, ).
(5.4)

The vanishing of the boundary terms in (5.4) can be shown using e.g. perturbative argu-
ments. The crucial point in the argumentation is that the momentum eigenstates have
normalization factors N_%, Mz, Any operator acting only at boundaries yields only a
finite part of these states in contrast to the operators T and AH](Vn) which act on the
complete chain and yield complete momentum eigenstates. The finite pieces of momen-
tum eigenstates are suppressed by the normalization factors N~z in the infinite chain
length limit. For example, for the translation operator Ty it is easy to verify explicitly
that the boundary terms tend to zero at A = 0 using precisely this argument. The ar-
gumentation for the Hamiltonian is analogous but slightly more complicated. A similar
perturbative argument has already been presented in [37] in order to show the vanishing
of the @)-dependence in the low-temperature regime.

These rather technical details are spelled out in appendix A.
We have shown that the boundary operators O(AHy 37) and O(Ty ar) vanish as N, M
go to infinity. Thus, in this limit

Jlim (AH = (By+ B))(IN:Ex)) p, © M5 Ex)) ) = 0.

lim (Tnyar — ' PH) ([N EL) p @ || MG En)) p,) = 0
N,M—oco

(5.5)
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holds. This shows that energy E and momentum P are additive — the additivity of the
charge Q is obvious. One can always build a basis for the space Hx = @ H; by considering
tensor products of basis vectors in Hy and Hy; with N + M = K. This is precisely what
we have done. Thus, the above procedure does indeed yield the complete spectrum.

One should be careful about the requirements that enter in our proof of the quasiparticle
picture in order not to mistake it for more general than it is. Note that the vanishing of
boundary terms is a crucial part of the proof. However, boundary terms are substantial for
conformally invariant systems with long ranged correlations. Also in the low-temperature
phase boundary terms play an important role because the free part of the Hamiltonian de-
pends on the difference of neighbouring spins (see also [37]). Thus, our proof applies neither
to critical points where one might have conformal invariance nor to the low-temperature
phase. Furthermore, we have used the explicit form (2.1) of the Hamiltonian (for example
for the selection rules in (5.1)).

It should be clear to the reader that our argument relies on a perturbation series for the
single-particle states and is valid only if this series is convergent. We will discuss the radius
of convergence for the Zsz-chain in more detail in section 8. At this place we would just like
to mention that this perturbative argument cannot be applied to massless incommensurate
phases because the main limitations on the convergence come from level crossings which
are characteristic for massless incommensurate phases.

Note that we have not assumed the Hamiltonian to be hermitean. In particular, the
quasiparticle picture should also be valid for ¢ € C as long as the single-particle excitations
exist and converge. This is indeed supported by numerical calculations [46].

The argument proving the quasiparticle structure can be refined in order to give an
upper estimate for the rate of convergence in N of the energy of a k-particle state. As an
approximation to a k-particle state for kN sites, total energy Ei, and total momentum P
we may take the k-fold tensor product of single-particle states

5N Beod) p = [N B 5 6. 0 [N B (56)
with Fior = Ele E, P = Ele P;. Now, the deviation from the limit N — oo is given
by:

k
P{(kN; Biotl| AH RN Eior)) p = Eror = [ # ((N: Bl O(AHN)|N; B)
=1

= O(N™H).

(5.7)

O(AHy) is some operator that acts only at sites 1 and N. The first equality simply
uses the definition of the scalar product in tensor products. The last equality is more
profound and due to the fact that operators acting only at boundaries of the chain are
suppressed by N ™! due to the normalization factor in the finite fourier transformation for
momentum eigenstates. This shows that the deviation of the energy of a k-particle state
(k > 1) from the limit is at most of order N=* for N — oco. Of course, one might find
better approximations for the eigenstates and the convergence could be faster. Thus, the
N-dependence of some energy eigenvalue gives only a lower bound on the number k& of
particles involved.
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This general argument is confirmed by our results for the two-particle states. Expand-
ing cos(zx) =1 — %:1;2 + (’)(:1;4) we can read off from (4.19) that the first order correction
of the kth two-particle state with respect to the boundary of the energy band behaves as
N~2. This is precisely what we expect from the general considerations.

This argument shows in particular that in a finite-size system the energy of any state
remains unchanged to order % According to the argument presented at the end of section
3 the energies of the fundamental particle states have to converge exponentially in N and
the energies of composite particle states have corrections at most of order ﬁ Thus,
the only modification in (5.1) at order % in the massive high temperature phase is a
discretization of the momentum (and possible minor modifications of the Brillouin zones

and selection rules [36]).

Note that the proof of the vanishing of boundary terms as sketched above and pre-
sented in detail in appendix A also directly applies to the Hamiltonian (2.2) itself. So
far, we have restricted ourselves to periodic boundary conditions I'y4; = I'y. How-
ever, one could also impose toroidal boundary conditions: ‘Cyclic’ boundary conditions
Fngr = w™ BT or ‘twisted’ boundary conditions Fngr = w_RI’i". Even ‘free’ boundary
conditions I'y 41 = 0 are well-known in the literature. Our argument shows that all these
different choices lead to the same spectrum in the limit N — oo. In particular, our results
are valid for all choices of boundary conditions and one is free to choose those which seem
most appropriate, e.g. one can leave the ends of the chain open instead of the unnatural
end-identification for a realistic physical system.

Again, this observation for the massive high-temperature phase is to be contrasted with
other situations. In particular, at the second order phase transition ¢ = ¢ =0, A = 1 the
correlation length becomes infinite and the boundary terms are very important [47 — 49].
Even in the massive low-temperature phase one observes long range order and boundary
terms cannot be neglected [37].

So far, we have not addressed the question of whether the fundamental particles satisfy
a Pauli principle or not — note that the above discussion is intrinsically insensitive to a
Pauli principle because the limit was defined such that the spectrum forms a closed set.
Nevertheless, for the special case n = 3 and ¢ = ¢ = 7, eq. (5.1) was obtained in [35]
supplemented with the Pauli principle mentioned below (5.1). Fortunately, due to (4.19),
we have some control over the finite-size dependence of the scattering states of two identical
particles in the general case. Up to first order in A these finite-size effects do essentially
neither depend on the charge () nor on the number of states n. Therefore, the nature
of the fundamental excitations can be determined by looking at one particular choice of
@ and n. However, for n = 2 one obtains the Ising model where it is well-known that
the excitation spectrum can be explained in terms of one fundamental fermion (see e.g.
[50]). This indicates that the fundamental excitations for general n should be regarded
as fermions. In particular, for a scattering state of two identical excitations ¢ and j the
momenta must satisfy P; # P;. In a scattering state of two different fundamental particles
these two fundamental particles can easily be distinguished because they carry different
Zip-charges. Therefore, two different particles should not be subject to a Pauli principle
(like it is the case for two different non-interacting fermions).
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6. Correlation functions

In recent papers a systematic investigation of the correlation functions of the Zs-chiral
Potts model in the massive phases has been started. First, a non-vanishing wave vector has
been predicted in [33][51] for the massive high-temperature phase and its critical exponent
was calculated from level crossings. Next, perturbative calculations for the massive low-
temperature phase analogous to those to be presented below have been reported in [37]. We
also studied the correlation function for the operator I' in the massive high-temperature
phase numerically in [34] and were able to demonstrate an oscillation. In [34] some of the
results to be presented below we already cited without derivation. Note also that for the
massless phases around A ~ 1 of the Zj-chain correlation functions have been derived in
[52] borrowing results from conformal field theory.

In this section we study correlation functions for the Zs-chiral Potts model perturbatively.
Before defining correlation functions, we first note that the two-point functions are trans-
lationally invariant because the groundstate |v) is translationally invariant:

(v] T3, T o) = (o] IO T o)

(o] oFp 0 [0} = (0] oFr0n |0). o
Thus, it makes sense to define the correlation function for an operator = by the following
expression:

—+

-t = =
C’:(:z;) — <U| —z41—1 |U> _ <U| =41 |U><U| =1 |U> 0<z< % (6.2)

(v]v) (v]v)?
where |v) is the eigenvector of the Hamiltonian to lowest energy. Here, we do not assume
that |v) is normalized to one and have therefore included the proper normalization factors
in (6.2). The correlation functions of the operators I'; and o, have the property
Cr(—z)=Cp(x)",
Co(—2) = Co(x)" = Co(x)
such that it makes sense to restrict to positive x. Note that (6.3) follows by complex
conjugation using (6.1). Explicit calculations show the validity of (6.1) and (6.3) as well.

(6.3)

For simplicity we will first neglect the correction term for the uncorrelated part as
well as the normalization in (6.2) and consider the following expression:

N
cz(x) == (v| ¥, 51 |v) 0<e< - (6.4)
The operator = for the Zs-chiral Potts model can be either I' or . For n > 3 also different

powers of these operators may be interesting.

One can use the quasiparticle picture which we have already derived in order to rewrite
a correlation function Cz(z) as follows:

C”(:ﬁ) — E;L.OZO OZTr(H?:l dpl) <U| E;/:—l |p17“‘7pn> <p17“‘7pn| El |U> . |<U| El |U>|2
) (v]v) (v]v)?

N 7 N (S )P ) ol Ei o) P
) (Hdpl) "’ (w]o)

(6.5)

18



where we have inserted a complete set of normalized n-particle states |p1,...,pn). Repre-
sentations similar to (6.5) have been used in quantum field theory for a long time (see e.g.
[53]) and are well-known to be useful for the evaluation of correlation functions of statis-
tical models (see e.g. [31]). According to (6.5) one could compute the correlation function
Cz(x) by computing its ‘form factors’ (p1,...,pn| =1 |v), but one can even derive inter-
esting results without doing so. Clearly, if the groundstate |v) has non-zero momentum
Py # 0 we expect an oscillatory contribution to the correlation function. However, one
can read off from (6.5) that an oscillatory contribution is also to be expected if Py, = 0
but the model breaks parity which precisely applies to the massive high-temperature phase
of the chiral Potts model. The correlation functions of massive models in general have an
exponential decay, i.e. Cz(z) = 6_%](5(1') where fz(x) is some bounded function. Accord-
ing to (6.5) we also expect an oscillatory contribution of the form ¢ *I°. In summary, we
expect correlation functions of the approximate form

2T

Cz(z) ~e €00, (6.6)
¢ is called ‘correlation length’ and L is the ‘oscillation length’ (L~ is the ‘wave vector’).

More precisely, for the Zj-chiral Potts model the operator I'y creates () = 1-single-particle
excitations from the groundstate. The dispersion relations of these particles clearly violate
parity. Therefore we expect that Cp(x) is of the form (6.6). The action of the operator
o1 1s much less spectacular. In particular, it leaves the charge sector () = 0 invariant and
thus it need not necessarily have an oscillatory contribution. In fact, from (6.3) we see
that C,(2) should be real which in view of (6.6) implies the absence of oscillations.

Symmetries of the Hamiltonian translate into symmetries of the form factors. In certain
cases these symmetries are already sufficient to compute the oscillation length L. In
appendix B we demonstrate this in a few cases for the correlation function Cre(z) of the
Zin-chiral Potts model. For Re(¢) = m one observes a shifted parity symmetry [46] that can
be derived e.g. along the lines of [14]. Using this symmetry one can show (see appendix B)
that

2mix

Cro(z)=¢rL

fo.r(x) (6.7a)
with
for(z)eR YV,
L= foro =rm,r €Z or p € R,Re(¢) =0,
2n
n— 2@

(6.7b)
L=

for p E R,Re(¢p) =mand 0 < Q <n.

Let us now turn to the explicit computation of correlation functions for the Zs-chain.
In order to be able to calculate the correlation functions we need to know the groundstate
|v) . We will calculate it from the free ground state | GS) using the perturbation expansion
(3.7). We should stress again that although we assume the free groundstate | GS) to be
normalized to 1, this is not necessarily true for the complete state |v). The expansion of
the groundstate |v) provides us with an expansion for the correlation functions in powers

of A -
cz(x) = Z /\”c(EV)(:I;) (6.8)
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where we again neglect an irrelevant overall normalization factor which depends on A. Note
that according to (3.7) a kth order expansion of the groundstate yields a k& + 1th order
expansion of the groundstate energy as a byproduct.

Using the state (4.1) one can calculate for the Zj-chiral Potts model in the high-
temperature phase the first orders in A for er(z):

oi
(@) =60, (@) = 61—
3C
1 N e—i <z> (6.9)
2 3 ;22
%)(l') 662 {5 3 —I_(Sl’,l 2 ‘I’(Sx,Ze 3 } .

In order to save place we present higher orders only in the final, properly normalized form
(6.15).

For the first orders of ¢,(x) we obtain
)y =1, () =0,
0) = gz {0+ 4 0L (6.10)

3C? 4 6

Again, we have postponed presentation of higher orders to the final, properly normalized

result (6.14).

Let us now discuss the correction terms in (6.2). The operator I, creates charge such that
charge conservation implies (v| T’} |v) = (v| Ty |v) = 0 for all x. Thus

o

—~
—~

=
~—

Cr(@) = 117 (6.11)

The corrections for the operator o are more complicated. Using the expansion (3.7) for
the groundstate one obtains independent of =

(ol [v) =(v] o0 v)",

N-3 (N —3)Cs
2 34V T 93
(v]og |v)y =1+ A e )\ 05
\i_ L J9isin (22) +9 — 4N + (28N — 90)C2 (N — 3)? (6.12)
* 81C? IR2 + 302
+ O()\?) V.

In order to be able to evaluate (6.2) we have to d1v1de (6.12) by the norm squared of |v)

before we subtract it. We apply (1 + >~ a, ) E,O; (=32 a,\")" to the norm
of |v)

al +A3NC + A

N (4(7¢*—1) N
_ 2
(lv) =L+ Mg ¥4 555 Vs {

sr— + g0 } + O(N\?) (6.13)

and obtain a normalized expression for the one-point function (6.12). It is not surprising

that up to the order calculated one has the equality |<U|<U|““’>|U | = |C{(1)] at the dual point
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in the low-temperature phase. In fact, this is to be expected from the proof of duality
presented in the appendix of [37] (eq. (A.5) ).

Inserting (6.12) and (6.13) into (6.10) leads to

1 Oy . Oy
C90) =00 =0, CP(0) = g {na+ 22 L el = 5 fona s L

1 2(1-10C2) 3 142002 1
C:(e) :2702{ "0 ( rRE 202> +oo (W e

2(1+20%) 1
02 ( SR 1602> }
(6.14)

Note that also the N-dependence in (6.9) is due to the N-dependence (6.13) of the norm
of |v). If we normalize |v) properly to 1 we have

O (@) =br0 @) = Feage
1 eI % @
2 s i22
CI(‘ )(l’) :@{51’,1T + 51:,26 5 } ) (615&)

1 ;2 1 8 _;¢ 2 8 5€i¢
CI(‘S)(x) :@{ _51:,1 € (C_2 + §> 51;,2 e 3 (C_2 - §> —I_(SLSC—Z}

which obviously is N-independent. Finally, in this case we obtain for the fourth order

4 1 ;22 ;22 9 3
Cr (@) = 8102{ ~ by (€5 447F) (1662 + ﬁ)

.24 . 4¢ .2¢ . 4¢
8¢i% (19C% —4)  3e~i% —20e's 3T
+ 0z 2 ( R + T i ) (6.15b)
s 4002 — 7 L9 3¢t 7
ik R2 402 ©h g2

which is also N-independent. More precisely, Clgk)(x) and Cc(,k)(:zj) are independent of N if
N > 2k and x < k.

Co(x) is real and positive for all values of ¢ and ¢ up to the order calculated. However,
it is not easy to read off from (6.14) what might be the form for large x. Thus, we specialize
to ¢ = ¢ = T and calculate two further orders for Cy(x):

€)= (x) = O (e) = CP () = 0.

COe) =5 {4620+ 8aa}
6.16
05_4)(3;) ZSL]_ {551;70 + 251:,2} ) ( )

CO () =
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As a byproduct we verified in this case two further orders of the equality | <U| U““’ |U> | = |CH (1)

at the dual point in the low-temperature phase.

Cr(z) in general has a non-vanishing imaginary part and therefore is worth while
being considered in more detail. Thus, we specialize again to the superintegrable case
¢ = » = 5 and obtain after calculating two further orders

i) =bro Gt () = 8y (é *9 |

@9@)——{51+2&2}+ﬁ/f Sp1 + 2620}

/3

P () =40 {451, L 10802} + g

{4(Sx 1 — 1051:,2 + 2051:,3} 9
V3

ciP(z )——115§{275x1-%185x2-+2105x3 705x4}—+z14584{ 278,51 + 18852 + 706,41}
i (2 )——§I§?{455x1-+1085x2-+2525x4-—1265x5}
V3
+ 7 {1551; 1 — 3651; 2 1451* 3 + 8451; 4 + 4251; 5} 5
2187
c@“(x)——55566{3815x1-+2145x2-+23145x3-+7845x4-+23105x5-—18485x6}
+i —31:—-{ 3810, 1 + 2146, 5 — 7846,.4 + 23108, 5} .
39366

(6.17)
Of course, we still have to calculate the sum (6.8). Thus, changes of signs in individual
orders need not necessarily turn up in the final result. In fact, it turns out that the
imaginary part of Cr(x) is always positive up to order 6 because the smallest orders are
positive and they dominate the others. However, for sufficiently small A\ the real part does
indeed change signs around = 4. Although we are not able to verify if it becomes positive
again around x = 12 (which would need more than the double of the orders which we have
calculated) it is in good agreement with the expected form (6.6). Therefore we fit (6.17)
by a complex exponential function. In summary, (6.17) indicates that

2me

Cr(z) = a CE=F)" L (1 a)s,, (6.18a)
Co(r) =p e & +qduo (6.18h)

such that Cr(z) is of the form (6.6) for # > 0. In (6.18) we have also taken into account
that from (6.16) g“g?; ~ 4 independent of the correlation length &,.

If (6.18a) is the correct form for Cr(x) we infer from (6.17) that L is about 14 for small
A. We can also see from the higher orders that L increases with increasing A such that it
might well be singular at A = 1. The correlation length £ tends to zero as A — 0. This
implies that — after proper re-normalization of the Hamiltonian — the mass gap becomes
infinite at A = 0. It has already been observed in [32] that there are physical reasons to
divide (2.2) by VA which would have exactly the effect of infinite mass at A = 0. Fits to

(6.18) for \ € {}1, ;, i} in the superintegrable case are given by the values in the following
table:

22



A 51“ a L 50’ p q Pmin %
0.25 | 0.55(3) 0.55(5) | 14.3(2) [ 0.25(2) [0.35(4) |0.32(4) [0.471 [1.07(2)
0.50 | 0.9(1) |0.59(3) | 16.5(8) | 0.38(4) |0.35(3) |0.24(3) | 0.401 |1.05(5)
0.75 | 1.5(6) |0.64(3) | 18.3(8) | 0.55(6) |0.36(2) |0.09(2) | 0.308 |0.90(4)

™

Table 1: Parameters for the correlation functions (6.18) at ¢ = ¢ = T
The estimates in table 1 have been obtained as follows. First, {r has been estimated by
Cr(=)
Cr(z+1)
been estimated by linear interpolation for two neighbouring values and % was obtained by

)~ and averaging over x. Next, the zero of Re(eéclﬂ(:z;)) has

calculating Re(In(

averaging. Finally, a was estimated such that the difference

= 2
Re(Cr(x)) — ae” &r cos (%) (6.19)
is minimal for + = 1,2. That this procedure yields reasonable fits is demonstrated by
Fig. 1 which shows the stretched correlation function efr Cr () in comparison to the fits.

r—6
The ‘error bars’ are not really error bars but given by ae ¢ which gives an idea how much

the values have actually been stretched and what might be the contribution of the next
orders in the perturbation expansion. The agreement for all  not only in the real part
but also in the imaginary part is convincing.

Table 2 shows the values C’Fert'(aj) corresponding to Fig. 1. This table also contains the
numerical results for the correlation function Cp"™(2) which were obtained in [34] for
N:12sitesat¢:<p:§,/\:%.

x 0 1 2 3 4 5) 6
Cpert. . . . . .
r (l’) 1 .188684-.07384: |.04561+.03980z [.009924.01747¢ |.00091+.006742 | —.000884-.00263¢ |—.00074
Cnum,( ) 1 . . . . .
T x .188814-.07385¢ |.04587+.03967z2 [.010044-.01737¢ |.001264.00679:2 | —.000564-.00224¢ | —.00080

Table 2: Perturbative results (6.17) and numerical results at N = 12 sites
for the correlation function Cr(z) at ¢ = ¢ = 7, A = %

The agreement between the results of both methods is good. This shows that on the one
hand higher orders are indeed negligible in (6.17) for « < 7 and on the other hand that
the finite chain length does not considerably affect the correlation function Cr(x).

Let us now discuss the implications of (6.15) under the assumption that (6.18a) is the
correct form for general values of the chiral angles. From the leading orders in (6.15a) we
read off the following identity for the ratio of Cr(1) and Cr(2):

i 22 .
Cr(2) SN +00N)  ¢if
= o _
) efiionyy X

A+ O(\?).

On the other hand we immediately obtain from (6.18a)

) :e_é 2me
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(6.20a)

(6.20b)




Comparison of (6.20a) and (6.20b) leads to

(6.21)

for small values of A. It is noteworthy that we obtain the same result for the oscillation

length L if we apply a similar argument to g;g;; in lowest non-vanishing order with

r1,22 € {1,2,3,4}. At ¢ = 5 (6.21) yields the approximations L = 12, {r = 0.52, 0.80,
1.2 for A = 0.25, 0.50, 0.75. The agreement with the numbers of table 1 is very good.
Thus, for very high temperatures the oscillation length L is proportional to the inverse
chiral angle ¢~1. In particular, the oscillation vanishes smoothly for ¢ — 0. In [32] it
was shown that for very high temperatures the minimum of the dispersion relation of the
fundamental particles is also proportional to ¢. More precisely, we read off from (4.6) that

the minimum of the dispersion relation is in first order perturbation theory at Py, = w.
Thus, we obtain from (6.21) for very high temperatures
PrinL |x—0= 27 Yo, e. (6.22)

Furthermore, the second order in (4.6) shows that the minimal momentum Py, decreases
with increasing A (compare also [34]). Similarly, we read off from (6.15) that the inverse
oscillation length L™! also decreases with increasing inverse temperature . Thus, (6.22)
has a chance to be valid for all values of A in the massive high-temperature phase. Indeed,
using the values of Py, given in table 8 of [32] we see that PyinL = 27 holds quite
accurately for A = 0.25,0.5,0.75 at ¢ = ¢ = § (compare table 1). Using numerical
methods we have checked in [34] that PyinL = 27 is indeed valid within the numerical
accuracy for general values of the parameters. The identity PyinL = 27 can e.g. be
derived from the form factor expansion (6.5) if the Hamiltonian has suitable symmetries
as 1s demonstrated in appendix B for certain special cases. However, it may well be that
in general this relation is not exact but an excellent approximation.

Note that even at ¢ = ¢ = 7 the correlation lengths {r and {, are clearly different.
Furthermore, ¢, coincides with its dual in the low-temperature phase whereas {r does not
(see [37]). Recall that for the correlation function C,(x) only the spectrum in the charge
sector @ = 0 is relevant but Cr(x) comes from the () = 1 sector. Using (6.5) this explains
the agreement of £, with £ in the low-temperature phase; in this phase all charge sectors
have a spectrum that is identical with the spectrum in the @) = 0-sector at the dual point
in the high-temperature phase [37].

7. The parity conserving Potts case

So far, we have studied correlation functions for general values of the parameters and for
the superintegrable case. In this section we discuss the standard parity-conserving Zs
case in more detail and compare the correlation length to the inverse mass gap. We also
examine the dispersion relation of the particle-/anti-particle pair closer for this special case
and show that, for general A, there is no simple relation between the square of the energy
and the momentum like the Klein-Gordon equation.
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First, we note that for ¢ = ¢ = 0 eq. (4.5) simplifies considerably and we can calculate
even higher orders:

1
() =AF10(0,0) = AB0(0.0) = = <6 4N —2\2 4 )3
3 (7.1)

1794 10995 _ 15865 16 163717 \7 _ 4564375 8 9
162/\ + 1458/\ 26244/\ + 629856/\ 68024448/\ > + O(/\ )

In this case the mass gap is located at zero momentum. Therefore, we defined (7.1) as
‘m(\)’. With respect to the quality of the approximation (7.1) we would just like to
mention that e.g. comparison with numerical values shows that the accuracy of the series
(7.1) is good for all A € [0,1]. However, (7.1) is an alternating sum and gives only good
approximations if an even number of orders is used. In particular, close to the phase
transition A = 1 higher order contributions do not always improve the approximation
which reflects that close to A = 1 this perturbation series is slowly convergent.

It is well-known that the critical exponent for m(\) at A = 1 equals %. The series eq.
(7.1) can be used to verify this critical exponent with a DLog-Padé analysis. In fact, this
check has already been performed in [4]. One can also use (7.1) or a numerical evaluation
of the mass gap m(\) in order to test the critical behaviour throughout the massive high-
temperature phase. One finds that (1 — /\)%m(/\) is a very slowly varying function (see also
[32][54]). This means that the normalization of the Hamiltonian (2.2) is indeed meaningful
even far away from the critical region.

Next we will discuss the correlation function Cr(z) for ¢ = ¢ = 0. If a statistical
system has an isotropic field theory as limit, the correlation length is related in this limit
to the inverse of the smallest gap between the ground state and the first excitation [50].
Therefore, one expects a relation & ~ m(\)~! [50]. Note that for small values of \ we expect

a different behaviour according to (6.21): {r ~ In <%>_1. We will now study these two
relations more closely by considering the correlation function Cr(x). First, we specialize
(6.15) to ¢ = ¢ = 0 and calculate two further orders. This leads to:

Oz
CI(xO)(eT) :51’70 ) CI(‘I)(:E) = 371 ?
1 1
(4) 1
r (@) =qqeeg 1815001 + 2+ 3T ) (7.2)
1
() = 509053 (3925021 + 58708, 5 + 90074, 3 4+ 120160, 4 + 68049, 5}
1
() = grmorag (44744001 + 776500, 5 + 1119520, 5 + 1531965, 4

+1629406, 5 + 748446, 6} .

Using (7.2) one can calculate the correlation length {r by the procedure described in the
previous section. We just mention a few pairs [\, &p:

[0, 0], [0.00005,0.094(2)], [0.0005,0.121(3)], [0.005,0.167(6)], [0.05,0.27(2)], [0.25,0.50(5)],
0.5,0.8(1)], [0.75,1.2(2)).
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Fig. 2 shows a plot including more estimates for the correlation length. At A = 0 there
is no correlation between different sites, i.e. the correlation length is zero. Omne observes
that it increases drastically for A > 0. It is clearly different from zero even for very small
values of \. We have also plotted the estimate (6.21) in Fig. 2. This crude estimate fits
the numerical results surprisingly well for all values of A accessible to us. In particular,
it nicely reproduces the behaviour for small A as it is expected from our derivation of the
estimate. In Fig. 2 we also plotted the properly normalized inverse mass m(\)~!. The
agreement is good for A > 0.3. For A < 0.1 one observes a clear disagreement. Note that

1
Cf(réf_)l) ~ e‘r < 10 and one should therefore expect that at least in this

region the finite lattice spacing is important.

in this region

It has been observed in [32] that for ¢ = ¢ = 0 the dispersion relation (4.6) agrees
with a Klein-Gordon dispersion relation up to order A\*. Furthermore, it was shown in [55]
that at the second order phase transition ¢ = ¢ = 0, A = 1 the dispersion relation is of
Klein-Gordon type with mass m(1) = 0. Using the abbreviation

K = 2sin (g) (7.3)

for the lattice analogue of the momentum we can specialize (4.6) to ¢ = ¢ = 0 and calculate
two further orders. This yields the dispersion relation

g(IX’) l:AELo(P, 0, 0) = AE270(P, 0, 0) =

1 A2 A3
:E{G +2(K* —2)\ — E(K4 —6K% +6) + E(2K6 — 14K* + 19K* + 18)

/\4
— @(151(8 — 152K°% + 531 K* — 738 K* + 358)
5
+ 2916(631(10 — T64K° + 3214K° — 5087K* + 1121 K* + 2198)} + O(\%)
(7.4)
for the two fundamental quasiparticles. The Klein-Gordon dispersion relation predicts
K* K* K*
E(K) = A ANEK? =m(A A —a(\)? —— DY R—
(1) = Vim0 + alE? =mn(0) 4 0(0) s = a0 s ) o
g 10 (7.5)
Ca R a4 0K
A Ta8m(NT 256m(\)°

where we have included a free normalization constant a(\) which corresponds to the ve-
locity of light. Rewriting (7.4) in the form (7.5) leads to

E(K) =m(A) + % (—4435\* 4 3618\3 — 2754\% + 1944\ + 5832) 277;(1)
. 1264/\32 (—2221)\% + 567\ + 324\ + 972) 8775&:\)3
25861A3 (a4 1480 4 1601 2’(1)5 - 40;936;4 (134X + 135)%
+ 32768/\5% +O(\%).
(7.6)
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In (7.6) the coefficients of K™ with lowest order in A agree with the Klein-Gordon dispersion
relation (7.5) °). However, using m(\) asin (7.1) and fitting a(\) from the coefficient of K?,
all but these leading orders disagree with (7.5). Thus, although a Klein-Gordon dispersion
relation is certainly a good approximation to (7.4) it is unfortunately not the exact form.

It happens quite frequently in two-dimensional quantum field theories that the dispersion
relation is sin-Gordon or sinh-Gordon. However, even these possibilities can be ruled
out because the first five orders of these dispersion relations agree with Klein-Gordon
(sin(:z;z) + (’)(:1;6) = 2% = sinh(:z;z) + (’)(:1;6) ) but the deviation from Klein-Gordon occurs
already at order K*. Therefore we consider an even more general dispersion relation of

the form
£(K) = \/mm 4 90aNE?)

b(N)
gla) =a+ 22 4+ 32 + gt + e’ + (’)(:1;6)

(7.7)

which contains the Klein-Gordon relation (7.5) for b(\) — 0. In particular, (7.7) is a
good approximation to the Klein-Gordon dispersion relation for small b(\). (7.7) would
also include both the sin-Gordon and sinh-Gordon relations for ¢co = 0 but since this has
already been ruled out ¢; has been absorbed in b(\). Determining from the first orders
of the Taylor expansion of (7.7) with respect to K? first m(\), then a()), b(\) and c3 it
turns out that ¢ depends on A. Thus (7.7) can be ruled out if the function ¢ is required
to be universal for all \.

8. Convergence of single-particle excitations

As far as the proof of the quasiparticle picture is concerned the main open question is the
convergence of the single-particle states, or equivalently the existence of the limits N — oo
of the corresponding eigenvalues of the Hamiltonian. We have argued in section 4 that
convergence of the perturbation expansions is sufficient to guarantee the existence of the
limits N — oo. Therefore we will discuss the radius of convergence for the perturbation
expansion of the single-particle excitations in this section.

For bounded operators —in particular finite dimensional ones— one could use criteria involv-
ing operator norms similar to those for v. Neumann series. Unfortunately, the potential
for AH](Vn) as defined in (2.2) and (2.14) is unbounded if N is not fixed. Thus, we have to
apply the slightly more complicated Kato-Rellich theory of regular perturbations. Reviews
of this subject can be found e.g. in the monographs [56][57]. The main results we are going
to use were originally published in [58][59]. The theory of Kato and Rellich applies in
particular to operators of the form (3.1), i.e. H(A\) = Hp + AV.

Suppose that the single-particle eigenvalues AE have a non-zero distance from the
scattering eigenvalues (the continuous spectrum) at A = 0. Then it is clear from the
discussion in the previous sections that these eigenvalues are non-degenerate and isolated.

In particular, the resolvent (AH](Vn)(/\) — z)7! is bounded for |[AE — z| > 0. Restricting

®) According to [55] one should have £(K) = 3|K| at A = 1. At A = 1 the series (7.4)
does not really converge any more. Nevertheless, it seems that (7.4) is compatible with

E(K)? =9K?% at A = 1.
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to the hermitean case, this is sufficient to guarantee that the AH](\?)(/\) are an analytic
family in the sense of Kato. In this case, the Kato-Rellich theorem ([56] Theorem XII.8)
may be used to guarantee a non-zero radius of convergence rg > 0 for the single-particle

eigenvalues of AH](Vn) (N).

In order to obtain explicit estimates of the radius of convergence one needs the inequality
IV [a) || < V|[Ho [a) | + K[ |a) | (8.1)

on D(Hy) which in our case is dense in the the complete Hilbert space H. Then, the
isolated point eigenvalues of H(\) are convergent at least for

AN<rp =Vt (82)

as long as these eigenvalues do not come in contact with continuous spectrum [59]. On
the one hand this criterion is very simple, on the other hand one must estimate not only
the constant V but also examine the level crossings between single-particle excitations and
scattering states. There is another estimate r; that guarantees the separation of eigenvalues
as well but gives smaller radii of convergence. For self-adjoint Hy with isolated eigenvalue
E(()O) where the nearest eigenvalue E;O) has distance € := |E£O) — E(()O)| (e71 = Hg(E(()O))H)
the perturbation expansion of Eg()) is convergent for

€

2 (/c + V(B + e)>

A< rg 1= (8.3)

and there are no crossings with neighbouring levels. In order to compare the estimates

(8.2) and (8.3) let us assume K = 0 and |E(()O)| = €. For this almost optimal case one has
r1 = 4ry showing that the criterion (8.3) is much more restrictive.

Let us now apply these general results to the present case of Z,-spin quantum chains.
For non-degenerate single-particle eigenvalues the Kato-Rellich theorem can be applied to
guarantee a positive radius of convergence rg. Then we know from section 5 and appendix
A that the spectrum of AH](\?)(/\) is a quasiparticle spectrum for A < rg. This fact can be
used to calculate the constant V and obtain explicit estimates ry (where level crossings still
have to be discussed) or ro. One can obtain the estimate (8.1) with K = 0 using Schwarz’
inequality:

a|l AV |a
V 1= sup % (84)
) €n |AHy o [a) |

In general, this supremum need not be finite but then it is very difficult to ensure conver-
gence at all. In our case, the important observation is that due to the quasiparticle picture
we can evaluate (8.4) exclusively from the single-particle excitations. To see this one per-
forms a first order expansion in A for any composite particle state, compares coefficients
and uses the quasiparticle property to expand the expectation values of AH](\ZO and AV
in single-particle excitations. Thus, V can be calculated as

Q Q
e P S
QP AH 152 pl

(8.5)
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In order to implement this program explicitly we specialize to the case of Zjz with
the parametrization (2.10). At A = 0 both single-particle eigenvalues are isolated for
—5 < < 7. This guarantees a non-zero radius of convergence rg.

The simplest case is the parity conserving case ¢ = ¢ = 0. Here, the maxima are located
at zero momentum P = 0 and both charge sectors are degenerate. Furthermore, we have
HAH](VS)OHSQ» | =¢€= E( ). From (7.1) we can therefore read off V =

radii of convergence

3, or in terms of

3 3
P R O (5:6)

ro = 0.375 is certainly too small which can easily be seen applying a naive ratio test to
(7.1). Extrapolating % to v = oo one obtains an estimate for the radius of absolute
convergence of about 1.3. Thus, for ¢ = ¢ = 0 the radius of convergence is expected to

be close to the boundary of the phase A = 1 which is also supported by the calculations in
section 7.

For general angles 0 < ¢ < 7, the free part of the Hamiltonian HAH](\%HSQ»OH is mini-
mized for @ = 1 and the potential p((s?|| AV||s?)) p is maximal for P = ? Thus, we read

off from (4.6) V = (\/gsin (”g—@))_l. Furthermore, one has € = 8sin <H> — 4sin (77"'3'—“0>

3
and E(()O) = 4sin (75%). This amounts to the following radii

o in (T ¢ ry — 3sm< )(281n< )—sin(”é’—@))
=i (5). 2 (35in (55%) —sin (759 &0

forn =3,0 < p < 7. For ¢ — 7 the situation is contrary to that at ¢ = ¢ = 0. The
Q) = 2 particle state becomes degenerate with two @ = 1 scattering states at ¢ = 7 such
that the radius of convergence must tend to zero for p — 7. Whereas o has precisely this

property, r1 tends to 0.866 ... which is certainly too large.

Because for small ¢ we would prefer the large radius of convergence 1 but at ¢ ~ 7

this is much too large and r; seems more appropriate we have to enhance the estimate
given by ry by a discussion of level crossings between single-particle states and scattering
states. For 0 < ¢ < 7 the first level crossing of this kind will take place between the () = 2
single-particle excitation and a two @) = 1 particles scattering state.

It is very difficult to determine those values of A\ explicitly and precisely where they
take place. Therefore, we will use the first order approximation of the perturbation ex-
pansion. We are looking for those values of A where a single point P exists such that

= 2AF, 0(123,qb, ) — AE; (P, ¢, ) vanishes. The fact that we are looking for no real
crossings but « = 0 implies % = 0. Inserting (4.6) and (4.7) up to first order leads to the

condition P4 5
sin (5 - 5) = sin (P + 5) (8.8)

P== (8.9)

Eq. (8.8) has a solution



that does not depend on ¢. Now we can solve the linear equation z |y,= 0 for the value

Ag. One obtains

Yo Ccos <§> + \/§sin <§>

Fig. 3 shows a plot of the estimates (8.7) and (8.10) for the self-dual case ¢ = ¢. Note
that r; and ry are independent of ¢. However, we have assumed that the Hamiltonian is
hermitean and therefore ¢ must be real. For ¢ close to 7, Ag is smaller than ro which is an

apparent contradiction because there are no level crossings for A < ry. Remember, however,
that A\g has been calculated approximately such that this difference is not significant. At
¢ = ¢ = 0 we find \g &~ 1. This is reassuring because perturbation expansions should not
be valid beyond the second order phase transition at A = 1. Although A\g was estimated by
looking at non-zero momenta there are also level crossings in the zero momentum sectors
at A = 1. Thus, the radius of convergence is indeed smaller than ry. Still, our results
agree in magnitude with the intuitive expectations from the ‘ratio test’. The dots in Fig.
3 indicate the two models whereof the spectra have been presented in Fig. 2 and Fig. 3
of [34]. For the left dot one expects a converging perturbation expansion whereas in the
other case it should not converge (compare [34]). Indeed, both estimates ry and Ao make
this distinction.

For completeness we have also included an estimate for the boundary of the massive high-
temperature phase in Fig. 3. At this boundary, levels of the () = 1 particle with generically
non-zero momentum cross with the ground state. Its explicit location has been obtained

estimating the minimum of the dispersion relation (4.6) with P = £ and solving the second

order approximation AELO(%,qb,qb) = 0 for \. At ¢ = 0 the agreement with the exact
value A = 1 is excellent. For small non-zero angles the true value is smaller than 1 but our
approximation gives values that are slightly larger than 1. Also at ¢ = 7 we observe a small
deviation from the exact value A = 0.901292... [14]: Our estimate yields A = 0.866...
(the agreement with rq is a coincidence).

The level crossings transition Ay divides the massive high-temperature phase of the Z;-
chiral Potts model into two parts which we label I and II. In part I the derivation of the
quasiparticle picture as presented in section 5 and appendix A is rigorous. Thus, in regime
I the spectrum is a quasiparticle spectrum with two fundamental particles existing for
all momenta. In [34] we have presented numerical evidence that regime II probably also
exhibits a quasiparticle spectrum with two fundamental particles where the () = 2 particle
has the unusual property that it exists only in a limited range of the momentum P. At
¢ = ¢ = 7 this statement has been proven rigorously in [35]. We expect that the idea
to approximate multi-particle states by putting single-particle states of ‘small’ chains with
a sufficient separation on a longer chain and to use the finite correlation length in order
to ensure vanishing of boundary terms (which we cannot show directly like in appendix
A any more) will apply also in regime II for general angles ¢, ¢. However, in contrast to
section 5 we loose control over the fundamental () = 2 excitation because the perturbation
series does not converge any more and there is no guarantee for the completeness of this
construction. At least it is plausible to still expect a quasiparticle spectrum in regime II
with two fundamental particles of which the ) = 2 particle may have a Brillouin zone that
is smaller than the interval [0, 2x].
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9. Conclusion and outlook

In this paper we have presented an argument using perturbation theory proving that
the massive high-temperature phases of all Z,-spin quantum chains exhibit quasiparticle
spectra with n — 1 fundamental particles. Since the argument relies on perturbation theory
it applies rigorously only to very high temperatures. Due to the perturbative nature of
the details we were not able to give it any predictive power for those case where some of
the fundamental particles cross with scattering states. For these cases one needs different
methods, e.g. Bethe ansatz techniques [35][36] or numerical methods [34]. Nevertheless,
the basic idea of approximating a multi-particle state by single-particle states sitting on
subparts of the chain might be applicable in the entire massive high-temperature phase.
One could even speculate that a similar argument can be applied to Z,-spin models in
higher dimensions as well.

A refined (but less rigorous) version of this argument can be used to control the finite-size
effects of k-particle states showing in particular that the energy of the excitations does not
1

pick up any corrections at order <.

Furthermore, our derivation of the quasiparticle picture involving n — 1 fundamental par-
ticles applies to the scaling region near the conformal point A = 1, ¢ = ¢ = 0, the only
non-rigorous part of the proof being the radius of convergence. This region (A < 1, ¢, ¢
small) corresponds to perturbations of conformal field theories with the thermal operator
[27 — 31] and a small additional perturbation of the type presented in [26] that breaks
parity.

Using duality [37] our results about the quasiparticle spectra can be pulled over to the
massive low-temperature phase of Z,-spin quantum chains.

Having derived such a quasiparticle picture the main open problem is to find the corre-
sponding massive field theory and to obtain the associated scattering matrix.

We also studied the correlation functions using a perturbation expansion for the ground
state of the Zs-model. Although this approach is limited to short ranges, we were not
only able to estimate correlation lengths in the massive high-temperature phase but it also
turned out that the correlation functions have oscillatory contributions. For very high
temperatures the oscillation length is proportional to the inverse of one of the chiral angles
L ~ ¢~1. We further observed that the oscillation length is closely related to the minimum
of the dispersion relations for general values of the parameters. The relation LP,;, = 27
is valid on the lattice with a much better accuracy than the well-known relation £ ~ m™1!.
For special values of the parameters we were able to derive the relation L Py, = 27 from
a form factor decomposition but one should certainly understand it better in the general
case.
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Appendix A: Proof of quasiparticle picture

In this appendix we present a modified version of the proof in section 5 that the spectrum
of the Hamiltonian (2.2) can be explained in terms of n — 1 fundamental quasiparticles.

The main steps of the proof will be as presented in section 5. However, instead of consider-
ing general multi-particle states we will go directly back to the single-particle excitations.
The corresponding perturbative eigenstates are given by (4.2). One also has to be careful

where it is permitted to deal directly with AH](Vn) or where one should rather consider H](Vn)
first.

In this appendix we will concentrate on the vanishing of boundary terms. Not all arguments
presented in section 5 will be spelled out in detail again. In particular, the limiting proce-
dures are taken for granted. This explicit presentation has been shifted to this appendix
because the explicit formulae are a bit nasty although the ideas are quite simple.

In order to be able to discuss r-particle states we first write down the generalization
of (5.2) to any partition of N in r arbitrary integers N; > 1 (N = 2;21 N;):

HY =HP 0L+ +10H 0L+ +1aH +Y OH) .

J=1

(A1)
Ty = (]]. + O(TN,,)) ... (]]. + O(TNl)) TN1 ®...Q TN,,-

Let v := E‘Z;ll N; (o := 0). Then, the boundary operators O(H](\Z)) and O(Ty;) are
given by

n—1
(n) Z k n—k n—k
O(HNj )= arlly; 4w, {PVﬂ-l N P”j+Nj+1} )
e . . . (A.2)
<]1 + O(TNJ)) |lez ce Z,,j_|_NjZ,,j_|_Nj+1 ce Z,,j+1_|_Nj+1Z,,j+1_|_Nj+1+1 Ce ZN>

:| 119 ... Z,,j+1_|_Nj+1Z,,j_|_Nj+1 Ce Z,,j_|_NjZ,,j+1_|_Nj+1+1 Ce ZN> .

It will be useful to verify first that additivity of energy and momentum holds for A = 0.
To this end we show that a composite particle state

IN: Quou)) oy =1l N py @@ 597 p, (A.3)

has approximately energy F := 2;21 Eq;, momentum Py := 2;21 P; and total charge
Qiot := 2;21 (0; mod n. Recall that we have defined all IERZD); p; in the complete Hilbert

space ‘H but it is useful to think of them as elements of Hy;,, i.e. IERZD); p; € Hn;. Applying
(A.1) to these states one obtains for the energy:

<H](\?) - E> HN7 Qtot>> Pioy — Z O(H](\Z))HN’ Qt0t>> Fron

J=1

" n 4 (A4)
3159 @0 (B = Bo, ) %) £ @ @ 11s%) p,
j=1

=0
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where we have used that O(H](\Z)) vanishes at A = 0 (compare (A.2) ). Thus, we verified
that additivity of energy is exact at A = 0.

Using (A.1) and (A.2) one obtains for the momentum

TN||N; Qtot)) Py = H {IL+O(Tn,)} (Tw, I ) p) @ ... @ (T, |1s97) p, )

- H {]1 + O(TNJ )} eiPEOt HN7 Qt0t>> Piot (A5)
=1
: < — —
=P N Quol) o+ P 1§ )
® ...

— ot |[s9) py @ 152 p,

F
where ° @ 7 denotes the modifications that occur when shifting in the entire tensor product
instead of acting in its individual parts. Locally, these modifications look as follows:

1590 by @ 5%+ ) by = 590 by @ 159+ by

=P i —ikP;

= Yo ——10... Qi ...0Q11)®]0...0)
Nj+1 k=1 NJ position k—1 (AG)
—iP;
— = 0...0Q5) @ [[s% ) by,
/N !
— 0.

In (A.6) we have used the explicit form (2.9) of the single-particle states |[s%i)) p;- The

vanishing of the boundary terms for N; — oo is ensured by the normalization factors Nj_ 2.
Thus, we have also shown that | N; Qo)) p,., approximates an eigenstate of the translation
operator to total momentum Pyt for A = 0.

For A > 0 we have to consider single-particle eigenstates || N;; ();)) . that are derived
J

by perturbation series from the states |[s%)) p; - These states have the form

ING Qi) p, = 159 ) by + D N 3 w0 I e (AT

v>0 1(1J)++z§€7‘]):QJ mod n J

# i) o) <ov 1

It is important to note that the explicit form of the Hamiltonian (2.2) implies that at most
2v + 1 spins 1 are different from zero in the vth order of the perturbation expansion. In

(v)

passing we mention that we do not need the explicit form of the x;;  ;, and therefore
(M et

the argument also applies to the more general Hamiltonian (2.1) without modification.
We should stress that the states (A.7) are in general not convergent for N; — oo although
(n)

the corresponding eigenvalues of AH " and Th; converge (compare e.g. (6.13) ). However,
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after re-normalizing ||N;; Q;)) p; to norm 1 we could again think of it as lying in H for all
N; because the vth order is independent of N; for v < Nj.

An r-particle state now is approximated by

IN; Qrot)) Proy 7= [[N1; Q1)) py @+ @ [Ne3 Q1)) - (A.8)

Note that (A.8) cannot be directly related to (A.3) by a perturbation expansion.

First, we consider the translation operator. Thus, we have to generalize (A.5) to the states

(A7), (A.8):

TN||N; Quot)) p., = H{n+o (Tw; )} (T, IN1; Q1)) ) @@ (

r; Qr>> P,,>

_ H {1 +0(Tw,)} €= |IN; Quor)

j=1
iP P ) ®
=P N Quot)) p, + €TINS Q) py © o B INSQY p,
® .

— P NG Q) py @ BN Q) g
(A.9)

The modifications introduced by &5 in (A.9) are more complicated than (A.6). Locally,
they look as follows:

F
INj; Q4)) p, @ [INj415 Q1)) p, | — IN;3 @5)) p, @ [ Nja15 Q1)) o,

(1J+1)+,,.-|—l§€7;—:1):Qj+1 mod n 1(1J)+,..+z§€7; :Qj mod n

# (9T w0y <o #1i0) w01 <ov 41
G+ £i (J)
41
—ik; P; (V) (7) (7) :(7) (7) ;G+1)
e <J> <J> K L S PR S IRy .| mj+1>®

e
Njit+1

ZA”{ )

] . X
v>0 1(1J)++z§€7‘]):QJ mod n

—imj 1 P41 (n) (j+1)
e TR D D |2 Y1 )

# i) o) <ov 1
() 2o
g

J

e~ tmi b H((l’;)) .. (J) |ng37¢)—|—1- (]) (])> } @ HNJ'H’QJ"'l>> Pjta

(A.10)
The explicit form of (A.10) may be slightly confusing. Note, however, that the vanishing
of the boundary terms is guaranteed by the same argument as in (A.6). It is sufficient to
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guarantee that the coefficients of A\¥ in the boundary terms become small with respect to
the coefficients of the eigenstates. The index set of the sums * and ** has precisely this
property. The sum * has at most 2y + 1 non-zero terms whereas the complete momentum

*

decomposition has Nj;; terms. Thus, the complete sum * is suppressed by the factor
1

Nj_fl. Also the sum ** has 2v 4 1 terms (or less) compared to N; for the complete fourier

_1

transform such that it is suppressed by the normalization factor N. 2. This shows that
|N; Qtot)) p,,, indeed approximates an eigenstate of the translation operator with total
momentum Piqt.

Translating these statements into weak language we conclude the following: The scalar
product of (A.10) with an arbitrary momentum eigenstate tends to zero if we rescale both
states such that they lie on the unit sphere. On the other hand, for any N a normalized
true eigenstate of the translation operator Ty exists such that the scalar product of this
state with | N; Qot)) p,., tends to its norm for N — oc.

Now we have to consider the generalization of (A.4) to A > 0:

(H8 = E)IN:Quonl = 3 OUTEIN: Quon)

i=1

DIV Qi) g, @0 (HY = B, ) IN; Q3) py © - 0 [N Q) i,

J=1

=" OHG)IN: Quot) ..

- (A.11)

The boundary terms explicitly read as follows:

O(HYING Quot)) p, = N15Q1)) p, @ ...

n—1 1 N;—1
v+1 (v)

Zozk Zx\ Z k.ay .o \/F{ Z

k=1 v>0 iy il =@ moan P I Um=0

#1i0) w01 <ov 41

B (i) — k mod n)ilyy i) (190 + k mod n)) @ [ N5 Qi) b

J+1

— P0G 4k mod n)) @ <P’f—kHNj+1; Qi+1)) pj+1>}

O V@

(A.12)
The crucial point in (A.12) is that the states |z57:7,) ... z%)_1> do not combine to momentum
eigenstates any more. More precisely, at fixed order v of the perturbation expansion one
obtains at most 2v + 3 terms of a complete momentum eigenstate. Therefore, these states

1
are suppressed for N; sufficiently large by the normalization factor N; . In other words:
If we project (A.12) at fixed order in A\ onto any momentum eigenstate and correct by
the norm of ||N;Qrot)) p,, the result tends to zero. Note that we may not draw direct
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conclusions for the limit of H](Vn) because the single-particle energies Fq; do not converge.

But for AH](Vn) the single-particle energies AEq; o converge and from (A.11), (A.12) we
may conclude that the states (A.8) behave precisely like r-particle states in the limit
N — oo.

We have shown so far that the quasiparticle excitations describe a subset of the spec-
trum of AH](Vn) in the weak limit. To complete the proof we have to argue that this is
already the complete spectrum. This is guaranteed by the fact that for any finite M the
complete Hilbert space Hjys can be mapped onto a subspace of Hy (N sufficiently large)
that is spanned precisely by the states (A.8). One natural choice is the mapping

Q1 Q) prs =+ NG Q) @ o @ [Nasi Qurl) o, €My (A3)
This completes the proof.

Let us conclude with a summary of what we have assumed and what we were able to
prove. Of course, the explicit form of the Hamiltonian (2.2) played an important role. We
needed three facts:

1) For some values of the parameters (A = 0) the quasiparticle spectrum is trivially
guaranteed.

2) In the vicinity of this point (A > 0) only nearest neighbours interact.

3) The Hamiltonian (2.2) possesses a Z,-symmetry.

It might seem that the third property was convenient mainly for notational reasons because
it straightforwardly encoded property 1). However, we also needed the explicit form of the
Hamiltonian (2.2) in order to ensure the absence of further selection rules (at least at
A = 0). Thus, although we did not rely heavily on property 3), we doubt that our proof of
the quasiparticle spectrum can easily be generalized to models having more complicated
selection rules.

We further required that

4) The perturbation expansions for the single-particle states converge.

Note that we did not assume the Hamiltonian H](Vn) to be hermitean nor did we require it
to be diagonalizable — only the existence of the single-particle eigenvalues is needed.
Already in section 4 we inferred from property 4) (and 2) ) that the limits N — oo of

the single-particle eigenvalues of AH](Vn) exist. The proof presented in this appendix shows
that under these assumptions

a) The weak limits of the operators T and AH](Vn) exist,

b) The weak limits can be ‘diagonalized’, i.e. the projection-valued measure of (2.16)
does indeed exist, and

¢) In this limit their spectrum can be expressed in terms of quasiparticle excitations.
In particular, the spectrum of the weak limit of AH](Vn) is explicitly known if the
dispersion relations of the single-particle excitations can be calculated.
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Appendix B: Symmetries of the Hamiltonian and the oscillation length

In this appendix we first discuss the behaviour of the Hamiltonian (2.2) under parity for
special values of the parameters. One finds symmetries that were observed numerically in
[46] for the integrable submanifold and can be derived e.g. along the lines of appendix B
of [14]. The resulting identities will subsequently be used in order to derive the values of
the oscillation length given in (6.7) from the form factor expansion (6.5).

Symmetries of the Hamiltonian:
Denote the projection of the Hamiltonian H](Vn) in eq. (2.2) onto the spaces Hﬁ’Q in eq.

(2.15) by ‘H](\?) (P, Q). Furthermore, introduce a parity operator B by the following action
on the states (2.5):

Note that PBo14, B = 01-5, Pr14.P = I'i—». Then one has the following identities (see
also [46]):

ar=ank = PHV(P,Q)B=HY (-P.Q),
ai=anpand oz €R = PH(P,Q)P = <H](vn)(—Pa Q)>+ ;

) +
ay = ap—j and aj = e, = ‘BH](\?)(PmQ +P,Q)B = <H](Vn)(Pm7Q — P, Q)>

(B.2)
where the symmetry of the last line holds for those Py, ¢ satisfying P oQ ' + 7z =0

mod 7 as well as ¢?Fm@ being an nth root of unity. Note that with the parametrization

(2.10) the cases covered by (B.2) are precisely those covered by (6.7) with z = 2. In this
case, Pp o = m(1 — %) is a solution to Py Q' + 27” = 0 lying in the interval [—7, 7]
— the other solution is shifted by 7. The solution Pp g = #(1 — %) corresponds to the
minimum in the dispersion relation of the single-particle state in this charge sector (see

132][46]).

The first two lines of (B.2) follow immediately by looking at ‘BH](VTL)‘B, keeping in mind
that the translation operator defined in (2.8) satisfies PTNP = T&l = T]"\i}. The derivation
of the third line of (B.2) is more complicated. For @ invertible in Z, it can be shown
choosing a suitable basis (see appendix B of [44]). For z = 2 and N = 0 mod n one can
follow the lines of eqs. (B.12) — (B.16) in appendix B of [14] to elegantly prove the third
line of (B.2).

In the case z = % and N = 0 mod n we introduce an operator U following [14] by

N
R —2z
U.-‘B(”leax ) . (B.3)
Now, observing that
U0'1_|_xU_1 = 01—z, UI’H_J;U_I :wzxfl_x (B4)
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_|_
one concludes that U H](Vn) Ut = <H](\?)> for af = w™?*ay,. Finally one verifies that

TyUlix .. in)) p = BTy (Hj: 0521’) liv...in) p =UQ 2™ F||iy...in)) p (B.5)

1

where Q is the charge operator given by eq. (2.7). Eq. (B.5) implies that the operator
U maps a state of charge () and momentum P to a state of charge ) and momentum
—% — P. After putting things together one obtains the desired result.

Oscillation length from symmetries of the Hamiltonian:
Assume that the Hamiltonian H(P, Q)) projected onto momentum and charge eigenspaces
with eigenvalues P and () has one of the following symmetries:
BH(PatP.QF = H(Pag-P.Q)  or  BH(PotP.QB = (H(Pag -~ P.Q)"
(B.6)

with some Py, ¢ depending on the charge sector (). Assume furthermore that P, = 0 and
that =; |v) has charge ). Then the oscillation length L of the correlation function Cz(x)
satisfies

LP, g =2rm. (B.7)
Note that this is true for more general Hamiltonians H(P, @), but it covers in particular
the case (B.2) for the Z,-chiral Potts model.

For a proof of (B.7) we start from the form factor expansion (6.5) which in the present
case becomes

o ipe (P Qir| =i |v) |

C=(x) Z/O dPe o) (B.8)
where we have only written the quantum numbers P and () explicitly and comprised the
other ones in the label ‘r’. First we observe that [=1 = =;. If the Hamiltonian satisfies
BH(Pn,g+P,Q)B = H(Pn.g—P,Q), then eigenstates of momentum Py, g+ P are mapped
under parity to eigenstates of momentum P, g—P. This means that ((Pm o+P), Q7| =1 |
v) = ((Pm,g — P),Q;r| =1 |v). If the symmetry involves the adjoint of the Hamiltonian
one finds (Pm,g + P).Q;r| Z1 |v) = ((Pm,g — P),Q;r| =1 |v)*. Thus, the following

identity is valid in both cases:

(P +P).Qir| Z1[0) [ = (P — P),Qir| =1 [v) 7. (B.9)
Now we return to the form factor expansion (B.8):
Pno+m P

o (P,Q;r| =1 |v)]? N WP O] =y o) |2
CE(J;):Z / AP eif* |< 7Q7<U||U>1| >| + / dp eiP |< 7Q7<U||U>1| >|

P g Prg—m

= Z/dP {ei(Pm,Q—I—P)x |<(Pm,Q ‘|‘P),Q;T| =1 |U> |2
"o

T

{v]v)

4 ei(Pm@=P)z (P, — P), @Qir| =1 [v) |2}
{v]v)

‘ [ Pug+P),@5r| Z1 |v)
= eifmou /dPZcos(P:z;) (P L
2 o)

(B.10)
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where the last equality follows from (B.9). This shows that Cz(«) is of the form

Cz(z)=e T f(x) (B.11)

with L satisfying (B.7) and f(x) is given by the remaining integral in (B.10) which is
clearly real.

Note that if the Hamiltonian has several different Py, ¢ such that (B.6) holds (which applies
to (B.2)) one obtains different expressions for Cz(x) involving different L and f(x). The
suitable one among them can be singled out by demanding e.g. f(x) > 0 for all . Our
explicit computations indicate that this requirement (which means that the oscillations are
exclusively encoded in the phase factor) indeed leads to the oscillations lengths presented

in (6.7).
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Figures

Fig. 1: Correlation for I in the high-temperature phase at ¢ = ¢ = t/2, A = 1/2
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Fig. 1. Correlation function Cr(x) stretched by eEr in comparison to the fits (6.18a) at

r—6
p=p=7, A= % The ‘error bars’ are given by ae ér which conveys an idea

how much the values have actually been stretched. The oscillatory contribution
to Cr(x) is clearly visible.
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Fig. 2: Correlation length for C-(x) in the high-temperature phaseat ¢ = ¢ = 0
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Fig. 2:

I8

Correlation length for Cr(x) in the massive high-temperature phase on the parity
conserving line ¢ = ¢ = 0. The points indicate estimates obtained from a per-
turbative evaluation of Cr(z). The lines indicate the approximation (6.21) for &
and the properly normalized inverse mass gap m(\) ™!,
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Fig. 3: Radii of convergence for n = 3 and hermitian Hamiltonian
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Radii of convergence and boundary of the massive high-temperature phase for the

hermitean Zs-chain. ry is an estimate ensuring convergence if no level crossings
between point and continuous spectrum occur. The estimate ro also ensures the
absence of level crossings. The perturbation series are definitely convergent for
A < ry although the true radius of convergence is larger. It extends until the
value A\g where the first level crossings between fundamental quasiparticles and
scattering states occur. A\g has been approximated using a first order perturbation
expansion which is surprisingly accurate.

The boundary of the massive high-temperature phase close to A = 1 has been
approximated using a second order perturbation expansion.

Note that ry and r; are independent of ¢ up to the order calculated whereas for

Ao we put ¢ = ¢.
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