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Abstract

The massive high�temperature phase of the chiral Potts quantum chain is studied using
perturbative methods� For the Z��chain we present high�temperature expansions for the
groundstate energy and the dispersion relations of the two single�particle states as well
as two�particle states at general values of the parameters� We also present a perturbative
argument showing that a large class of massiveZn�spin quantum chains have quasiparticle
spectra with n � � fundamental particles� It is known from earlier investigations that
�at special values of the parameters� some of the fundamental particles exist only for
limited ranges of the momentum� In these regimes our argument is not rigorous as one
can conclude from a discussion of the radius of convergence of the perturbation series�

We also derive correlation functions from a perturbative evaluation of the groundstate for
the Z��chain� In addition to an exponential decay we observe an oscillating contribution�
The oscillation length seems to be related to the asymmetry of the dispersion relations�
We show that this relation is exact at special values of the parameters for generalZn using
a form factor expansion�
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�� Introduction

In this paper we discuss the chiral Potts model in its spin quantum chain formulation� The
�rst chiral Potts model that was introduced in ���� by Ostlund in order to describe incom�
mensurate phases of physisorbed systems 
�� was a classical �D spin model� The associated
quantum chain Hamiltonians were obtained in ������� by Rittenberg et al� 
��
��� Because
this chain was not self�dual the location of the critical manifold was di�cult� In ����

Howes
 Kadano� and denNijs introduced a self�dual Z��symmetric chiral quantum chain

��
 which however
 does not correspond to a two�dimensional model with positive Boltz�
mann weights� Soon afterwards
 von Gehlen and Rittenberg noticed that the remarkable
property of the �rst gap of this model being linear in the inverse temperature also applies
to the second gap and can be generalized to arbitraryZn 
��� Furthermore
 the authors of

�� showed that the Ising�like form of the eigenvalues is related to thisZn�Hamiltonian sat�
isfying the Dolan�Grady integrability condition 
�� � or equivalently 
�� Onsager�s algebra

��� It was then shown by Au�Yang
 Baxter
 McCoy
 Perk et al� that this integrability prop�
erty � nowadays called �superintegrability� � can be implemented in a �D classical model
with Boltzmann weights de�ned on higher genus Riemann surfaces that satisfy a general�
ized Yang�Baxter relation� In the sequel the chiral Potts model attracted much attention
because of these mathematical aspects
 i�e� on the one hand the generalized Yang�Baxter
relations 
�� ��� and on the other hand because of Onsager�s algebra 
��
��� ���� In this
paper we present new results showing that the model is also �physically� very interesting
although it is not directly related to a realistic �D physisorbed system�

Our observations will apply to general Zn�spin quantum chains� The superintegrable Zn�
chiral Potts quantum chains can be generalized �not necessarily demanding integrability�
to include further known integrable models
 in particular the conformally invariant models
of Fateev and Zamolodchikov with WAn���symmetry 
�� � ���� Recently
 Cardy intro�
duced an integrable chiral perturbation of these models 
���� The Zn�spin quantum chains
describe both this perturbation as well as the integrable thermal perturbations of the
conformal �eld theories �see e�g� 
��� �����

In previous papers we provided numerical evidence that the low�lying excitations in the
zero momentum sectors can be explained in terms of n � � fundamental particles for
n � �
 � at general values of the parameters 
���
��� and checked for n � � that this
quasiparticle picture extends to general momenta 
���� For the superintegrable Z��chiral
Potts model McCoy et al� have derived a quasiparticle picture of the complete spectrum
using Bethe ansatz techniques 
���� Recently
 they argued that this quasiparticle picture
should in general be valid for the integrable Z��chiral Potts quantum chain 
���� In this
paper we will show that both results can be combined into the general statement that the
massive high�temperature phases of general chiral Potts quantum chains have quasiparticle
spectra� In fact
 this quasiparticle picture will in certain cases give small corrections to
the additivity of energy in the momentum zero sectors observed in 
����

The massive low�temperature phases of the Zn�spin quantum chains exhibit spectra that
are dual to those in the high�temperature phases
 the main di�erence being that the r�ole
of charge and boundary conditions is interchanged 
���� Therefore
 our results about the
massive high�temperature phase can be transferred to the massive low�temperature phase
using duality�

�



In this paper we also use perturbation series in order to continue the systematic study of
correlation functions which has been started in 
���
���
���� We pay special attention to the
oscillatory behaviour which is also present in the massive phases and show how it can be
related to the parity violation of the excitation spectrum via a form factor decomposition�

The outline of this paper is as follows� In section � we recall some well�known facts
about the chiral Potts quantum chain and introduce basic notions� Section � presents
a short summary of perturbation theory which is applied in section � to the dispersion
relations of the lowest excitations of theZ��chain� In section � we derive the main statement
of our paper� The quasiparticle structure of the massive high�temperature phase� Details
of the proof are shifted to an appendix� This argument can also be used in order to obtain
some control on the �nite�size e�ects� In section � we apply perturbation expansions
and form factor decompositions to the correlation functions
 our main interest being the
oscillatory contribution� Then we specialize to vanishing chiral angles and discuss some of
the results obtained previously in more detail� The �nal section � where we discuss the
radius of convergence of the perturbation series completes our investigation�

�� The chiral Potts quantum chain

This section summarizes well�known basic facts about Zn�spin quantum chains� We also
introduce some notions that will be useful later on� For more details see e�g� the review

����

A general Zn�spin quantum chain with N sites is de�ned by the Hamiltonian�

H
�n�
N � �

NX
j��

n��X
k��

��k�
k
j � ��k�

k
j�

n�k
j�� �

����k�
k
j�

n�k
j�� � �����

For reasons to be explained below we will in all subsequent sections set �� � �
 i�e� we will
neglect the extra term in ����� introduced in ref� 
��� and will consider

H
�n�
N � �

NX
j��

n��X
k��

��k�
k
j � ��k�

k
j�

n�k
j�� �����

instead� �j 
 �j and �j freely generate a �nite dimensional associative algebra with invo�
lution by the following relations �� � j� l � N��

�j�l � �l�j � �j�l � �l�j�
�j�l �

�j�l � �l�j � �nj � �
n
j � �

n
j � ��j�j�

n � �� �

�j�l � �l�j � �j�l � �l�j�
�j�l � �j�j�j�j � � �� �z �

n operators

�� �� �

��j � �n��n � ��j � �
n��
j � ��j � �

n��
j

�����

where � is the primitive nth root of unity � � e
��i
n � In the following we will consider only

periodic boundary conditions for H�n�
N 
 i�e� �N�� � ���
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The Hamiltonian ����� contains �n�� parameters� The temperature�like parameters � and
�� which we choose to be real and the complex constants ��k
 �k and ��k� H

�n�
N is hermitean

i� ��k � ���n�k
 �k � ��n�k and ��k � ��
�
n�k�

The algebra ����� is conveniently represented in

HN �� C
n � C n � � � �� C n� �z �

N times

�����

labeling the standard basis of C n by fe�� � � � � en��g� Then a basis for ����� is given by�

j i� � � � iN i �� ei� � � � �� eiN � � � ij � n� �� �����

Now the following operation in the space ����� is a faithful irreducible representation r of
the algebra ������

r��j � j i� � � � ij � � � iN i � �ij j i� � � � ij � � � iN i �

r��j � j i� � � � ij � � � iN i �j i� � � � �ij � � mod n� � � � iN i �

r��j � j i� � � � ij � � � iN i �
�� j i� � � � �ij � �� � � � iN i � if ij � n� ��
j i� � � � � � � � iN i � if ij � n� � �

�����

The involution is the adjoint operation with respect to the standard scalar product in the
tensor product of C n�

The Hamiltonian ����� commutes with the Zn charge operator �Q ��
QN

j�� �j acting
on the vectors ����� as

r� �Q� j i� � � � iN i � �

�P
N

j��
ij

�
j i� � � � iN i �����

which shows that the eigenvalues of �Q have the form �Q with Q integer� Thus
 H
�n�
N has

n charge sectors which we shall refer to by Q � �� � � � � n� ��
H

�n�
N also commutes with the translation operator TN that acts on the basis vectors

����� in the following way�

r�TN � j i�i� � � � iN i �j i� � � � iN i�i � �����

The eigenvalues of TN are Nth roots of unity� We label them by eiP and call P the
�momentum�� We choose � � P � �� corresponding to the �rst Brillouin zone and have

P � f�� ��
N
� � � � �

���N���
N

g� Note that the states

ki�i� � � � iN��iN ii P ��
�pN

�
j i�i� � � � iN��iN i � eiP j iNi�i� � � � iN��i � � � �

� eiP �N��� j i� � � � iN��iN i�i
� �����

are eigenstates of TN with eigenvalue eiP � N is a suitable normalization constant� If the
state j i� � � � iN i has no symmetry �i�e� T kN j i� � � � iN i ��j i� � � � iN i for all � � k � N�
 one
has N � N � This will apply to most cases below where we need ������
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In this paper we will use the following parametrization of the constants �k and ��k

�xing their dependence on k�

�k �
ei��

�k
n
���

sin �k
n

� ��k �
ei��

�k
n
���

sin �k
n

� ������

This is a suitable choice because it includes a large class of interesting models�

For � � 	 � � one obtains real �k � ��k �
�

sin �k
n

� This leads to models with a second

order phase transition at � � � which can be described by a parafermionic conformal �eld
theory in the limit N � � at criticality 
���
���� These so�called Fateev�Zamolodchikov�
models 
��� lead to extended conformal algebras WAn�� where the simple �elds have
conformal dimension �� � � � � n for generic values of the central charge c 
���� The spectrum
of the Hamiltonian ����� can be described by the �rst unitary minimal model of the alge�
bra WAn��� For n � � the symmetry algebra is Zamolodchikov�s well�known spin�three
extended conformal algebra 
��� at c � �

	
�

Choosing � � 	 � �
� in ������ for the Hamiltonian ����� yields the superintegrable chiral

Potts model� For n � � such complex parameters in a spin chain Hamiltonian were �rst
investigated in detail by Howes
 Kadano� and denNijs 
��� The integrability of this chain
was then recognized by von Gehlen and Rittenberg who also generalized it to higher Zn

��� More precisely
 the authors of 
�� showed that the Zn�Hamiltonian ����� with ������ at
� � 	 � �

� is integrable for all values of the inverse temperature � using the Dolan�Grady
integrability condition 
��� This particular kind of integrability is called �superintegrability�
�note that this terminology is not used entirely consistent in the literature � in contrast
to us
 some authors include the generalized Yang�Baxter relations in the notion of su�
perintegrability�� Ahn et al� 
��� showed that the Hamiltonian ����� is still integrable at

� � 	 � �
� for ��k � �k � ��k � �� i cot �k

n
and any �
 ��� Their argument used Onsager�s

algebra in order to construct an in�nite set of commuting conserved charges� Note that the
Hamiltonian ����� subject to the above constraints is not superintegrable for general values

of the parameters� Anyway
 one can introduce a further parameter �� into ����� without
spoiling integrability ���

The parametrization ������ also includes the family of integrable models discovered in

����� which interpolates between the integrable cases at � � 	 � �
 � � � and � � 	 � �

�
�

The Hamiltonian ����� is integrable if one imposes the additional constraint

cos	 � � cos� ������

on the parametrization ������� For � � 	 � � this yields � � � � the conformally invariant
critical points� At � � 	 � �
 the Hamiltonian is self�dual
 i�e� it is invariant under a

duality�transformation such that H
�n�
N ��� �� �H

�n�
N ������ The Hamiltonian is also self�

dual on the superintegrable line � � 	 � �
� � H

�n�
N with the choices ������
 ������ is in

�� For n � � and � � �� this gives rise to extra symmetries of the Hamiltonian �
one obtains an XY quantum chain 
��� that is invariant under an additional global U���
symmetry group� However
 one can easily check that for n 
 � the Hamiltonian ����� is
not invariant under any non�trivial change of bases �j � a�j � b�j 
 �j � c�j � d�j �

�



general not self�dual any more whereas particular choices yield a self�dual Hamiltonian�

If we choose for ������ � � 	 and neglect ������ H
�n�
N will be self�dual again� Therefore

we choose to refer to ����� with ������ as the general �chiral Potts model�� We will not
consider the integrable case where the additional constraint ������ is satis�ed in detail�

We will now explain why we are going to focus on the Hamiltonian ����� rather than
considering the more general case ������ For � � � ����� is just a di�erent representation of
������ Thus
 although we will certainly obtain di�erent numerical results
 the main struc�
tures are unchanged by the extra term in ������ In this paper we will use for example pertur�
bation theory� The free part of the Hamiltonian H� is the same in ����� and in ������ H� �
�Pj�k ��k�

k
j � Only the potential V is changed� For ����� we have V � �Pj�k �k�

k
j�

n�k
j��

whereas for ����� we have an extra term �V � �Pj�k �k�
k
j�

n�k
j�� � h��k�kj�

n�k
j�� with

h �� ������ Obviously
 the action of V and �V on the eigenstates ����� of charge and
momentum is the same apart from di�erent numerical constants� Furthermore
 the extra
term in ����� spoils duality� Thus
 we will not consider the Hamiltonian ����� explicitly any
more� It is always understood that our results apply to it with only minor modi�cations�
In particular
 the quasiparticle picture we will derive for the Hamiltonian ����� will hold
for ����� as well�

Our main interest is the spectrum in the limit N � � of H
�n�
N � Of course
 we have

to specify how the limit is to be taken� In order to be able to study the spectrum in this

limit we concentrate on the N�dependence of the Hilbert spaces HN � D�H�n�
N �� Consider

the following embedding of Hilbert spaces�

HN � HM N �M

ki� � � � iN ii P �� ki� � � � iN � � � � �� �z �
M�N times

ii P � ������

This de�nition is motivated by the well�known fact that matrix elements of ����� in mo�
mentum space are almost independent of N � We will see in the following sections that this
de�nition is indeed useful�

Using the inclusion map ������ we can de�ne the Hilbert space H as the closure of an
inductive limit

H �� fjxi j 	N � jxi � HNge� ������

Furthermore
 we shall not consider the limit of H
�n�
N directly� Instead
 we shall subtract

the groundstate energy E�
N �rst and then consider the weak limit of the operator

 H
�n�
N �� H

�n�
N �E�

N��� ������

Similarly
 we de�ne T to be the weak limit of TN � For each �nite N eqs� ����� and �����
imply that the Hilbert space HN is graded into charge and momentum eigenspaces�

HN �
M
P

n��M
Q��

HP�Q
N � ������

�



In the limit N �� the grading ������ translates into the fact that  H�n� and T can be
written in terms of the same projection�valued measure f!Q� g�

T �
n��X
Q��

Z
eiP ���d!Q� �  H�n� �

n��X
Q��

Z
 E���d!Q� ������

with � � P ��� � ��� The f!Q� g can be thought of as in�nite dimensional generalizations
of projection operators onto eigenspaces of charge Q and momentum P ���� Thus
 ������
is just the proper formulation of ������ in the in�nite dimensional case� The existence of
the limits and projection valued measures in ������ is not at all obvious� However
 this is
guaranteed by the quasiparticle picture whereof a proof is presented in appendix A�

The de�nition in ������ is motivated by the fact that the smallest eigenvalue of ����� has a
leading term proportional to N and the excitation spectrum usually is de�ned with respect

to this reference eigenvalue� With the de�nition ������ the Hamiltonian  H�n�
N is bounded

from below� This automatically yields an operator  H�n� � lim
N��

 H
�n�
N with positive

spectrum and an eigenvector for eigenvalue �� Note that this de�nition of the limit implies
that any point where at �nite N eigenvalues exist that are arbitrarily close to it belongs
to the spectrum� In particular
 the spectrum forms a closed set�

Before proceeding let us make a few further comments on our de�nition of the limit�

First note that H
�n�
N is de�ned only on D�H�n�

N � � HN 
 H� Of course
 we could extend it
linearly �e�g� by �� to the complete Hilbert space H� However
 it is easy to show that the
limit  H�n� does not depend on the particular extension chosen as long as it is uniformly
bounded for all N � We will therefore not make use of any particular extension�

Secondly
 it is convenient to let H
�n�
N act on vectors in D�H�n�

N � � HN which corresponds
to choosing a particular representative for a vector in the Hilbert space H� This is useful
because H

�n�
N naturally acts on chains of length N � However
 such a vector always has

to be thought of as lying in H and
 in particular
 in all HM with M � N � Although
the notation might propose this
 a limit in the chain length never has to be applied to
momentum eigenstates� Of course
 other states than ����� are not naturally embedded into
H and therefore have to be expanded in terms of them� This might lead to N�dependent
coe�cients and a limit might have to be applied to the coe�cients�

Finally
 it is noteworthy that the Hilbert space H can be thought of as a kind of universal
tensor product� Any tensor product of spaces HN and HM can be naturally identi�ed
with HN�M � HN �HM

�� HN�M � Therefore the de�nition ������ yields an object that
is closed with respect to taking tensor products� Note that we have chosen a particular
topology on H which is not the one usually chosen on the tensor algebra of a vector space�
Still
 this observation is useful to guarantee the completeness of the construction to be
presented in section ��

�� Generalities about Perturbation Theory

In this section we review the general outline for perturbation theory to all orders as pre�
sented in 
��� which directly applies to the degenerate case as well�

�



The Hamiltonian ����� can be written as

H � H� � �V �����

with H� � �
P

j�k ��k�
k
j 
 V � �

P
j�k �k�

k
j�

n�k
j�� � The eigenstates for H� are obvious
 thus

we have solved�
H� jai � E

���
jai jai � �����

Now one can solve
H ja���i � Ejai ja���i �����

for small � as follows� Let qjai be the projector onto the eigenspace of H� with eigenvalue

E
���
jai � We can treat non�degenerate and degenerate perturbation theory alike if we choose

jai such that
qjai V jai � E

���
jai jai �����

with a constant E
���
jai 
 i�e� qjai V qjai is to be chosen diagonal� One also needs a regularized

resolvent g�z� of H��

g�z� ��
�
�� � qjai

�
�z �H��

��
� �����

Then
 the Wigner�Brillouin perturbation series

Ejai �
�X
���

��E
���
jai � ja���i �

�X
���

�� ja� �i �����

is given by the following recurrence relations 
����

ja� �i �jai

ja� �i � g�E
���
jai �

�
V ja� � � �i �

���X
���

ja� � � �iE���
jai

	
�

E
�����
jai � ha j V ja� �i �

�����

Note that neither j a���i nor j a� �i are in general normalized although j ai must be
normalized to one� Observe that the derivation of ����� does not rely onH being hermitean�
Therefore
 ����� may also be applied to diagonalizable but non�hermitean H�

The radius of convergence of the series ����� can be more easily discussed in a di�erent
framework� Therefore
 we postpone such a discussion to section ��

There is one observation that makes explicit evaluation of high orders for the Zn�

Hamiltonian ����� possible� The energy�eigenvalues Ejai of H
�n�
N do depend on the chain

length N � However
 for the low lying gaps  Ejai �� of  H
�n�
N �see ������ � the coe�cients

for powers of � become independent of N up to order �N�� �see e�g� 
����� Intuitively
 this
can be inferred from the fact that ����� shows only nearest neighbour interaction and thus

�� This will apply precisely to the fundamental quasiparticle states to be discussed below�

�



we need N � � powers in V to bring us around a chain of length N � Smaller powers in V
�or �� do not feel that the length of the chain is �nite�

�� High�temperature expansions

In this section we study the low lying levels in the spectrum of the Z��chiral Potts model
perturbatively� In particular
 we calculate the dispersion relations of the lowest excitations
in the charge sectors Q � � and Q � �� Some �rst results in this direction have been
presented in 
��� for the self�dual version of this model� In this section we derive higher
orders and admit general � �� 	 ��� We also present some explicit results on the next
excitations�

Perturbation expansions had already been used in 
��
 and were again used e�g� in 
���
and 
��� in order to obtain some results for spectra and order parameters on the superin�
tegrable line� Recently
 low�temperature expansions have been applied in 
��� to spectra
and correlation functions for general values of the parameters� Here
 we focus on the
high�temperature regime�

For arbitrary n
 N the groundstate of the Hamiltonian ����� in the limit � � � is
given by�

jGSi ��j� � � ��i �����

provided that ��
� � 	 � �

� � For n � � ����� will be the groundstate for the larger range�� � 	 � � and for n � � ����� is the groundstate for � 	�

 � 	 � 	�


 �

The �rst excited states at � � � for Q 
 � and arbitrary P are the states

ksQii P �� kQ� � � � �ii P �����

in the range ��
�
� 	 � �

�
� According to our de�nition of the space H in section �
 the

states ����� give rise to proper eigenstates in the limit of  H�n�� Thus
 the corresponding
gaps  EQ���P � belong to the point spectrum of  H

�n��

More generally
 we wish to argue later on that the complete spectrum can be explained
in terms of quasiparticles� At � � �
 a single�particle excitation corresponds to just one
"ipped spin ������ Due to the absence of interactions k�particle states have k "ipped spins
at � � �� For � 
 � one would have to take the interactions into account using perturbation
theory� Although we are in general not able to perform such a computation directly
 it
may still be suggestive to think in terms of such states� In fact
 such a picture is quite
traditional �see e�g� 
�����

In the following we will use the abbreviations�

C �� cos

	
�

�
� bC �� cos�� � 	

�

�
� R �� �� �C� � �Cr �� cos

�
r�

�

�
� �����

�� Note that the main limitation of the length of most of the series to be presented in
this section is that we explicitly keep the dependence on the parameters�

�



For n � � we can calculate the groundstate energy per site e� which is de�ned byE�
N � Ne�

perturbatively�

e� �� �p
�
C � ���

�
p
�C �

�C���
�
p
�C� �

p
�

��C
�
�

�C� �
�

R
�
�� �

p
� �C�
��C�

�
�

�C� �
�

R
�
�	 �O��
��

�����
Eq� ����� is independent of the chain length N if N 
 �� In order to convey some idea
of the quality of such an expansion we mention that for � � 	 � �

� and � � �
� the

di�erence between ����� and the result of a numerical diagonalization of the Hamiltonian
����� performed with �� sites is of magnitude ����� Further comments on the accuracy
of �����
 in particular at the boundary of the phase
 can be found in 
��� where the same
expansion has been calculated for the massive low�temperature phase�

Furthermore
 for n � � we obtain for the lowest Q � � gap and P � � using the states
������
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 E������	� is given by  E������	� �  E��������	��
For n � � and general P we obtain from the states ����� the following perturbation
expansion for the dispersion relation of the lowest Q � � excitation�
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and the lowest Q � � excitation is given by�

E��P � ��  E����P� �� 	� �  E����P�����	�� �����

�



Eqs� ����� and ����� have already been presented in 
��� in a di�erent form� Note that the
agreement of ����� and ����� with the results of a numerical diagonalization is usually good
as was discussed in detail in 
����

In the previous section we mentioned that the kth orders of ����� � ����� are independent
of N if N � k � �� In particular
 this implies the existence of the limits N � � of �����
and ����� if the perturbative series converge at all�

In the derivation of ����� we have not assumed that the Hamiltonian ����� is hermitean�
Thus
 we may admit � � C � We have checked in a few cases that results of a numerical
diagonalization at N � �� sites are still in good agreement with ����� also for complex ��

We would like to mention that it is no problem to compute further orders of the series
�����
 ����� and ������ In fact
 we have indeed done so �see eq� ������� of 
��� for the �th
order result of ����� and eq� ������� of 
��� for the �th order contribution to ������ but
refrain from presenting the results because the next orders are very complicated and not
relevant for our purposes�

Obviously
 for � � 	 � �
� we have to perform degenerate perturbation theory� The

correct perturbative excited state for Q � � and P � � is for odd N �r
�

N � �

�
k�� � � � �ii � � k��� � � � �ii � � � � � k� � � � � �� �z �

N��
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and for even N �r
�

N � �

�
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With this state we obtain for N 
 ��

 E���

�
�
� �

�
�

�
� ���� �� �O���� �����

as expected� In fact ����� has been proven exactly 
��� using di�erent methods but previous
perturbative calculations were restricted to the non�degenerate case  E��� at � � 	 � �

�
�

This demonstrates the universality of the approach to perturbation expansions outlined in
section ��

Also for the higher excitations we must apply degenerate perturbation theory� The
next simplest case are the states where two spins are di�erent from zero� For general P 

��

� � 	 � �
� the space of the excitation with one spin "ipped into charge sector Q� and

another one "ipped into charge sector Q� is spanned by the states

ktQ��Q�

j ii P �� kQ� � � � � �� �z �
j�� times

Q�� � � � �ii P � � � j �
�
N � �� if Q� �� Q��

N
�

�
� if Q� � Q��

������

Obviously
 we will have to consider two cases� Q� �� Q� and Q� � Q��

��



Let us �rst consider Q� �� Q�� For n � � we can choose Q� � �
 Q� � �� Then we may
omit the upper indices of t because they are uniquely �xed� ktjii P �� kt���j ii P � Now
 the
potential V acts in the space ������ as�

qr�V �kt�ii P �� �p
�
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������
where q is the projector onto the space ������� Although it is not di�cult to diagonalize
������ numerically for comparably long chains �e�g� N � ����
 we did not succeed in
obtaining a closed expression for the eigenvalues or eigenvectors�

In the second case
 i�e� Q �� Q� � Q� introduce the abbreviation W by�

� �

sin


�Q
n

� cos�P
�
�
�
�� �Q

n

�
�

�
WktQ�Qj ii P �� qr�V �ktQ�Qj ii P � ������

In the case of two identical excitations we will also have to distinguish between even and
odd momenta in terms of lattice sites� It is therefore convenient to introduce a further
abbreviation 
NP encoding this distinction�


NP �� � � if
PN

��
odd� 
NP �� � � if

PN

��
even� ������

The action of the potential V now is
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At �rst sight ������ looks much more complicated than ������� This is however misleading
and the matrixW can be diagonalized explicitly� In order to do so
 we exploit a connection
to graph theory �see e�g� 
����� In this section
 we restrict to a graphical representation of
������ and ������ � the calculation is spelled out in detail in appendix A of 
����

Each vector ktQ��Q�

j ii P will be symbolized as a ��� with the index written above� The
action of the potential V is symbolized by lines
 with the square of the matrix elements

��



�up to an isomorphism presented in appendix A of 
���� attached to them� Assume �rst
that we could distinguish the two "ips we make� Then the graphical representation for the
action of the potential V �or W � would be

��
�

�� 
 
 
 
 
 
N���
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N��� � �AN��� � ������

Here ��Lk�� denotes the incidence matrix derived from the Cartan matrix of a Lie algebra
Lk� However
 the states ktQ�Qj ii P and ktQ�QN�jii P are proportional to each other and must
therefore be identi�ed� Furthermore
 it turns out that forN even and NP

��
odd ktQ�QN

�

ii P � �
vanishes identically� This already splits the graph ������ into two disjoint parts� Therefore

a graphical representation of ������ is given by�
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Fortunately
 all the graphs ������ have norm less or equal to � ��� Because the eigenvalues
of such graphs are classi�ed 
��� we can derive the �rst order explicitly�

In the case of ������ the situation is di�erent� In order to simplify the discussion
consider the case P � � � �� Then one can represent ������ as

V � 
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��
�

�� 
 
 
 
 
 
N���
�

N���
�


 
 
 
 
 
 � ������

Note that instead of drawing a closed diagram we have represented part of it twice� It is
easy to see that the norm of ������ is larger than � �it tends to � for N ���� The absence
of explicit expressions for the eigenvalues of such graphs prevented us from deriving an
explicit expression for the �rst order of two�particle states in the Q � � sector�

The result of the calculation in appendix A of 
��� for the eigenvectors of the matrix
W as given by ������ is�
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�� �Tk� is the Tadpole graph�

��



The �nal result for the �rst order expansion of the energy for these excitations is for N � ��
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For remarks on the second order see appendix A of 
����

�� Evidence for quasiparticle spectrum

In this section we present an argument using perturbation theory that the spectrum of
the Zn�Hamiltonian ����� can be interpreted in terms of quasiparticles for a wide range of
parameters� In the case of Z�
 the dispersion relations of the two fundamental particles
with Q � � and Q � � are given by ����� and ������

The results in 
��� ��� suggest that we may expect a quasiparticle spectrum� More
precisely
 all excitation energies  EQ�r�P� �� 	� should satisfy

 EQ�r�P� �� 	� �
mrX
k��

EQ�k� �P �k�� � P �
mrX
k��

P �k� mod �� � Q �
mrX
k��

Q�k� mod n �����

where E��P �� � � � �En���P � are the energies of the n� � fundamental quasiparticles� Addi�
tionally
 the fundamental quasiparticles seem to satisfy a Pauli principle
 i�e� Q�i� � Q�j�

implies P �i� �� P �j�� In particular
 for n � �
 ����� and ����� are the dispersion relations of
the fundamental Q � � and Q � � quasiparticles and all other states can be obtained by
composition under the assumption that energy
 momentum and charge are additive�

It should be clear to the reader that a particle interpretation is not directly incorporated
into the Hamiltonian ����� neither is it related to any particular integrability properties
of the Hamiltonian� Even on the superintegrable line the derivation of ����� given in 
���
for n � � only yields the quasiparticle spectrum at the very end� This is due to the fact
that standard Bethe ansatz methods �which would automatically ensure a quasiparticle
spectrum� have failed for the integrable chiral Potts model such that functional relations
for the transfer matrix had to be used in order to determine the excitation spectrum �see

��� and references therein�� Instead of specializing to the integrable chiral Potts model
and using particular integrability properties we will argue below that the quasiparticle
interpretation ����� follows from the basic physical properties of �nite correlation length
and absence of long�range order which are not related to integrability at all� Although
this is not a surprising observation
 a rigorous derivation of ����� using this argument is to
the best of our knowledge not contained in the literature� This motivated us to spell this
argument out in more detail below as well as in appendix A�

Before presenting a proof of ����� we would like to add a remark on Figs� ��� of 
����
In the limit N � � the eigenvalues seem to become dense such that we may expect to
interpret the energy bands as continuous spectrum in the weak limit of the Hamiltonian�
Note that according to our de�nition
 the single particle excitations ����� lead to point

��



spectrum� One also observes that the energy bands are �lled from the interior such that
their boundaries do not belong to the spectrum for any �nite N � However
 we have
pointed out in section � that the spectrum is closed in the in�nite chain limit� Thus
 the
boundaries of the energy bands will belong to the spectrum in this in�nite N limit� It is
worthwhile noting that the normalization factors �p

N
for the two�particle states in ������

demonstrate that these states tend to zero for N �� and will therefore not give rise to
proper eigenvectors� This con�rms that with our de�nition of the limit composite particle
states belong to the continuous spectrum�

Before proceeding with the general discussion let us �rst look a little closer at the
two�particle states� Comparing ������ with the �rst order expansion for the single�particle
states eq� ���� of 
��� one observes that this �rst order expansion of the two�particle
excitations is in agreement with the quasiparticle rule ������ Up to �rst order the composite
particle states satisfy either � EQ���P� �� 	� �  E�Q�k��P� �� 	� � � EQ���P � ��� �� 	�
or � EQ���P� �� 	� 
  E�Q�k��P� �� 	� 
 � EQ���P ���� �� 	� depending on which one of
the single particle energies is larger� Thus
 the two�particle states do indeed lie inside the
energy band of two single�particle states and the boundaries are not included� Even more

we can see from ������ that the two�particle states become dense in this energy band for
N ���

Let us now present a more abstract argument which ensures the validity of ������ The
interaction in the Hamiltonian ����� is very short ranged � in fact
 only among nearest
neighbours� In the massive high�temperature phase there is no spontaneous order and
the correlation length is �nite� Thus
 if one puts two excitations of �short� chains with
a su�cient separation on a longer chain
 the interaction will be negligible� For example

putting one single�particle excitation one the left half of the chain and another on the right
half will approximate a two�particle excitation�

We make this derivation of the quasiparticle interpretation of the spectrum more precise
using perturbative arguments� According to the remarks at the beginning of section �
the quasiparticle spectrum with "at dispersion curves is easily veri�ed for � � �� In this
section we sketch a proof that the quasiparticle picture remains valid for � 
 � � we just
present the main ideas� A modi�ed rigorous version of the proof is spelled out in appendix
A�

First
 we notice that

 H
�n�
N�M �  H

�n�
N � �� � ��� H�n�

M �O� HN�M� �

TN�M � f�� �O�TN�M �g TN � TM
�����

where �O��N�M �� denotes an operator acting only at sites �
 N��
 N and N�M��� One
of the main steps of the proof is to show that these boundary operators vanish in the limit
N�M � �� It should be clear to the reader that the coproduct rule ����� is going to be
crucial for the derivation of the quasiparticle picture ������ In particular
 our proof cannot
be easily modi�ed to accommodate more complicated selection rules and will therefore be
speci�c for Zn�spin quantum chains

If we can build a composite state of any two states we have to show that energy
 charge and
momentum behave additive under this composition and that we can construct all states�
Then
 the quasiparticle structure follows by induction�

��



Composite particle states are expected to give rise to continuous spectrum� This is a
technical complication in the argument we are going to give because it is not possible to
use eigenstates but we must show that the resolvent is unbounded� However
 for each
�nite N the Hamiltonian has a complete set of eigenstates� We have already argued in
section � that the resolvent becomes unbounded for any energy if it can be approximated

by eigenvalues of  H
�n�
N � This in turn can be ensured by providing a sequence of vectors

kk�Eii P that approximate eigenvectors of  H�n�
N to eigenvalue E for N large� Thus
 we

would have to take two limits simultaneously� However
 a standard argument shows that
it is no loss of generality to restrict to the diagonal sequence k � N �

The assumption in the induction is that we can choose two sequences of states kN �E�ii P� �
HN and kM �E�ii P� � HM such that in the weak limits of  H�n� and T they give rise to

unbounded resolvents at Ek
 e
iPk �

lim
N��

� H
�n�
N �E�� kN �E�ii P� � � � lim

N��
�TN � eiP� � kN �E�ii P� � � �

lim
M��

� H
�n�
M �E�� kM �E�ii P� � � � lim

M��
�TM � eiP�� kM �E�ii P� � ��

�����

We know that such sequences of states exist at least for the single�particle states � the
perturbative series for ksQii P �
The second major step in the proof is to consider now the state kN �E�ii P��kM �E�ii P� �HN�M � From ����� one has

 H
�n�
N�M�kN �E�ii P� � kM �E�ii P� � �� H�n�

N kN �E�ii P� � � kM �E�ii P�
� kN �E�ii P� � � H�n�

M kM �E�ii P� �
�O� HN�M��kN �E�ii P� � kM �E�ii P� � �

TN�M�kN �E�ii P� � kM �E�ii P� � ��TNkN �E�ii P� � � �TMkM �E�ii P� �
�O�TN�M ��TNkN �E�ii P� � � �TMkM �E�ii P� ��

�����
The vanishing of the boundary terms in ����� can be shown using e�g� perturbative argu�
ments� The crucial point in the argumentation is that the momentum eigenstates have
normalization factors N� �

� 
 M� �
� � Any operator acting only at boundaries yields only a

�nite part of these states in contrast to the operators TN and  H
�n�
N which act on the

complete chain and yield complete momentum eigenstates� The �nite pieces of momen�
tum eigenstates are suppressed by the normalization factors N� �

� in the in�nite chain
length limit� For example
 for the translation operator TN it is easy to verify explicitly
that the boundary terms tend to zero at � � � using precisely this argument� The ar�
gumentation for the Hamiltonian is analogous but slightly more complicated� A similar
perturbative argument has already been presented in 
��� in order to show the vanishing
of the Q�dependence in the low�temperature regime�

These rather technical details are spelled out in appendix A�

We have shown that the boundary operators O� HN�M� and O�TN�M � vanish as N 
 M
go to in�nity� Thus
 in this limit

lim
N�M��

� H
�n�
N�M � �E� �E����kN �E�ii P� � kM �E�ii P� � � � �

lim
N�M��

�TN�M � ei�P��P����kN �E�ii P� � kM �E�ii P� � � �
�����

��



holds� This shows that energy E and momentum P are additive � the additivity of the
chargeQ is obvious� One can always build a basis for the spaceHK � �KH� by considering
tensor products of basis vectors in HN and HM with N �M � K� This is precisely what
we have done� Thus
 the above procedure does indeed yield the complete spectrum�

One should be careful about the requirements that enter in our proof of the quasiparticle
picture in order not to mistake it for more general than it is� Note that the vanishing of
boundary terms is a crucial part of the proof� However
 boundary terms are substantial for
conformally invariant systems with long ranged correlations� Also in the low�temperature
phase boundary terms play an important r�ole because the free part of the Hamiltonian de�
pends on the di�erence of neighbouring spins �see also 
����� Thus
 our proof applies neither
to critical points where one might have conformal invariance nor to the low�temperature
phase� Furthermore
 we have used the explicit form ����� of the Hamiltonian �for example
for the selection rules in �������

It should be clear to the reader that our argument relies on a perturbation series for the
single�particle states and is valid only if this series is convergent� We will discuss the radius
of convergence for theZ��chain in more detail in section �� At this place we would just like
to mention that this perturbative argument cannot be applied to massless incommensurate
phases because the main limitations on the convergence come from level crossings which
are characteristic for massless incommensurate phases�

Note that we have not assumed the Hamiltonian to be hermitean� In particular
 the
quasiparticle picture should also be valid for � � C as long as the single�particle excitations
exist and converge� This is indeed supported by numerical calculations 
����

The argument proving the quasiparticle structure can be re�ned in order to give an
upper estimate for the rate of convergence in N of the energy of a k�particle state� As an
approximation to a k�particle state for kN sites
 total energy Etot and total momentum P

we may take the k�fold tensor product of single�particle states

kkN �Etotii P �� kN �E�ii P� � � � �� kN �Ekii Pk �����

with Etot �
Pk

l��El
 P �
Pk

l�� Pl� Now
 the deviation from the limit N � � is given
by�

P hhkN �Etotk H�n�
kN kkN �Etotii P �Etot �

kY
l��

PlhhN �ElkO� HN �kN �Elii Pl

� O�N�k��

�����

O� HN � is some operator that acts only at sites � and N � The �rst equality simply
uses the de�nition of the scalar product in tensor products� The last equality is more
profound and due to the fact that operators acting only at boundaries of the chain are
suppressed by N�� due to the normalization factor in the �nite fourier transformation for
momentum eigenstates� This shows that the deviation of the energy of a k�particle state
�k 
 �� from the limit is at most of order N�k for N � �� Of course
 one might �nd
better approximations for the eigenstates and the convergence could be faster� Thus
 the
N�dependence of some energy eigenvalue gives only a lower bound on the number k of
particles involved�

��



This general argument is con�rmed by our results for the two�particle states� Expand�
ing cos�x� � � � �

�x
� � O�x�� we can read o� from ������ that the �rst order correction

of the kth two�particle state with respect to the boundary of the energy band behaves as
N��� This is precisely what we expect from the general considerations�

This argument shows in particular that in a �nite�size system the energy of any state
remains unchanged to order �

N
� According to the argument presented at the end of section

� the energies of the fundamental particle states have to converge exponentially in N and
the energies of composite particle states have corrections at most of order �

N� � Thus

the only modi�cation in ����� at order �

N
in the massive high temperature phase is a

discretization of the momentum �and possible minor modi�cations of the Brillouin zones
and selection rules 
�����

Note that the proof of the vanishing of boundary terms as sketched above and pre�
sented in detail in appendix A also directly applies to the Hamiltonian ����� itself� So
far
 we have restricted ourselves to periodic boundary conditions �N�� � ��� How�
ever
 one could also impose toroidal boundary conditions� �Cyclic� boundary conditions
�N�� � ��R�� or �twisted� boundary conditions �N�� � ��R��� � Even �free� boundary
conditions �N�� � � are well�known in the literature� Our argument shows that all these
di�erent choices lead to the same spectrum in the limit N ��� In particular
 our results
are valid for all choices of boundary conditions and one is free to choose those which seem
most appropriate
 e�g� one can leave the ends of the chain open instead of the unnatural
end�identi�cation for a realistic physical system�

Again
 this observation for the massive high�temperature phase is to be contrasted with
other situations� In particular
 at the second order phase transition � � 	 � �
 � � � the
correlation length becomes in�nite and the boundary terms are very important 
��� ����
Even in the massive low�temperature phase one observes long range order and boundary
terms cannot be neglected 
����

So far
 we have not addressed the question of whether the fundamental particles satisfy
a Pauli principle or not � note that the above discussion is intrinsically insensitive to a
Pauli principle because the limit was de�ned such that the spectrum forms a closed set�
Nevertheless
 for the special case n � � and � � 	 � �

�

 eq� ����� was obtained in 
���

supplemented with the Pauli principle mentioned below ������ Fortunately
 due to ������

we have some control over the �nite�size dependence of the scattering states of two identical
particles in the general case� Up to �rst order in � these �nite�size e�ects do essentially
neither depend on the charge Q nor on the number of states n� Therefore
 the nature
of the fundamental excitations can be determined by looking at one particular choice of
Q and n� However
 for n � � one obtains the Ising model where it is well�known that
the excitation spectrum can be explained in terms of one fundamental fermion �see e�g�

����� This indicates that the fundamental excitations for general n should be regarded
as fermions� In particular
 for a scattering state of two identical excitations i and j the
momenta must satisfy Pi �� Pj � In a scattering state of two di�erent fundamental particles
these two fundamental particles can easily be distinguished because they carry di�erent
Zn�charges� Therefore
 two di�erent particles should not be subject to a Pauli principle
�like it is the case for two di�erent non�interacting fermions��

��



�� Correlation functions

In recent papers a systematic investigation of the correlation functions of the Z��chiral
Potts model in the massive phases has been started� First
 a non�vanishing wave vector has
been predicted in 
���
��� for the massive high�temperature phase and its critical exponent
was calculated from level crossings� Next
 perturbative calculations for the massive low	
temperature phase analogous to those to be presented below have been reported in 
���� We
also studied the correlation function for the operator � in the massive high�temperature
phase numerically in 
��� and were able to demonstrate an oscillation� In 
��� some of the
results to be presented below we already cited without derivation� Note also that for the
massless phases around � � � of the Z��chain correlation functions have been derived in

��� borrowing results from conformal �eld theory�

In this section we study correlation functions for the Z��chiral Potts model perturbatively�
Before de�ning correlation functions
 we �rst note that the two�point functions are trans�
lationally invariant because the groundstate jvi is translationally invariant�

hv j ��x�r�r jvi � hv j ��x���� jvi �
hv j ��x�r�r jvi � hv j ��x���� jvi �

�����

Thus
 it makes sense to de�ne the correlation function for an operator � by the following
expression�

C��x� ��
hv j ��x���� jvi

hv jvi � hv j ��x�� jvi hv j �� jvi
hv jvi � � � x �

N

�
�����

where jvi is the eigenvector of the Hamiltonian to lowest energy� Here
 we do not assume
that jvi is normalized to one and have therefore included the proper normalization factors
in ������ The correlation functions of the operators �x and �x have the property

C���x� � C��x�
� �

C���x� � C��x�
� � C��x�

�����

such that it makes sense to restrict to positive x� Note that ����� follows by complex
conjugation using ������ Explicit calculations show the validity of ����� and ����� as well�

For simplicity we will �rst neglect the correction term for the uncorrelated part as
well as the normalization in ����� and consider the following expression�

c��x� �� hv j ��x���� jvi � � x �
N

�
� �����

The operator � for the Z��chiral Potts model can be either � or �� For n 
 � also di�erent
powers of these operators may be interesting�

One can use the quasiparticle picture which we have already derived in order to rewrite
a correlation function C��x� as follows�

C��x� �

P�
n��

R ��
�
�
Qn

i�� dpi� hv j ��x�� jp�� � � � � pni hp�� � � � � pn j �� jvi
hv jvi � jhv j �� jvi j�

hv jvi �

�
�X
n��

Z ��

�

�
nY
i��

dpi

�
e
ix
��P

n

j��
pj

�
�Pjvi

� jhp�� � � � � pn j �� jvi j�
hv jvi

�����

��



where we have inserted a complete set of normalized n�particle states jp�� � � � � pni � Repre�
sentations similar to ����� have been used in quantum �eld theory for a long time �see e�g�

���� and are well�known to be useful for the evaluation of correlation functions of statis�
tical models �see e�g� 
����� According to ����� one could compute the correlation function
C��x� by computing its �form factors� hp�� � � � � pn j �� jvi 
 but one can even derive inter�
esting results without doing so� Clearly
 if the groundstate j vi has non�zero momentum
Pjvi �� � we expect an oscillatory contribution to the correlation function� However
 one
can read o� from ����� that an oscillatory contribution is also to be expected if Pjvi � �
but the model breaks parity which precisely applies to the massive high�temperature phase
of the chiral Potts model� The correlation functions of massive models in general have an
exponential decay
 i�e� C��x� � e�

x
� f��x� where f��x� is some bounded function� Accord�

ing to ����� we also expect an oscillatory contribution of the form ei
��x
L � In summary
 we

expect correlation functions of the approximate form

C��x� � e�
x
�
�i ��x

L � �����

� is called �correlation length� and L is the �oscillation length� �L�� is the �wave vector���

More precisely
 for the Z��chiral Potts model the operator �� creates Q � ��single�particle
excitations from the groundstate� The dispersion relations of these particles clearly violate
parity� Therefore we expect that C��x� is of the form ������ The action of the operator
�� is much less spectacular� In particular
 it leaves the charge sector Q � � invariant and
thus it need not necessarily have an oscillatory contribution� In fact
 from ����� we see
that C��x� should be real which in view of ����� implies the absence of oscillations�

Symmetries of the Hamiltonian translate into symmetries of the form factors� In certain
cases these symmetries are already su�cient to compute the oscillation length L� In
appendix B we demonstrate this in a few cases for the correlation function C�Q�x� of the
Zn�chiral Potts model� For Re��� � � one observes a shifted parity symmetry 
��� that can
be derived e�g� along the lines of 
���� Using this symmetry one can show �see appendix B�
that

C�Q�x� � e
��ix
L fQ�r�x� ����a�

with
fQ�r�x� � R �x �

L �� for � � r�� r �Z or 	 � R�Re��� � � �
L �

�n

n� �Q for 	 � R�Re��� � � and � � Q � n �

����b�

Let us now turn to the explicit computation of correlation functions for the Z��chain�
In order to be able to calculate the correlation functions we need to know the groundstate
jvi � We will calculate it from the free ground state jGSi using the perturbation expansion
������ We should stress again that although we assume the free groundstate jGSi to be
normalized to �
 this is not necessarily true for the complete state jvi � The expansion of
the groundstate jvi provides us with an expansion for the correlation functions in powers
of �

c��x� �
�X
���

��c
���
� �x� �����

��



where we again neglect an irrelevant overall normalization factor which depends on �� Note
that according to ����� a kth order expansion of the groundstate yields a k � �th order
expansion of the groundstate energy as a byproduct�

Using the state ����� one can calculate for the Z��chiral Potts model in the high�
temperature phase the �rst orders in � for c��x��

c
���
� �x� �
x�� � c

���
� �x� � 
x��

ei
�

�

�C �

c
���
� �x� �

�

�C�
�

x��

N

�
� 
x��

e�i
��
�

�
� 
x��e

i
��
�

	
�

�����

In order to save place we present higher orders only in the �nal
 properly normalized form
�������

For the �rst orders of c��x� we obtain

c���� �x� � � � c���� �x� � � �

c���� �x� �
�

�C�
�

x�� �


x��

�
�
N � �
�

�
�

������

Again
 we have postponed presentation of higher orders to the �nal
 properly normalized
result �������

Let us now discuss the correction terms in ������ The operator �x creates charge such that
charge conservation implies hv j ��x jvi � hv j �x jvi � � for all x� Thus

C��x� �
c��x�

hv jvi � ������

The corrections for the operator � are more complicated� Using the expansion ����� for
the groundstate one obtains independent of x

hv j ��x jvi � hv j �x jvi � �

hv j �x jvi � � � ��
N � �
��C� � ��

�N � �� �C�
��C�

� ��
�

��C�
�
� i sin

�
��
�

�
� �� �N � ���N � ���C�

�R�
�
�N � ���
�C�

	
�O��	� �x�

������

In order to be able to evaluate ����� we have to divide ������ by the norm squared of jvi
before we subtract it� We apply �� �

P�
��� a��

��
��
�
P�

��� ��
P�

��� a��
��
�
to the norm

of jvi

hv jvi �� � ��
N

��C� � ��
N �C�
��C� � ��

N

��C�
�
���C� � ��
�R�

�
N

�C�
�
�O��	� ������

and obtain a normalized expression for the one�point function ������� It is not surprising

that up to the order calculated one has the equality j hvj �xjvihvjvi j � jC lt
� ���j at the dual point

��



in the low�temperature phase� In fact
 this is to be expected from the proof of duality
presented in the appendix of 
��� �eq� �A��� ��

Inserting ������ and ������ into ������ leads to

C���
� �x� �C

���
� �x� � � � C���

� �x� �
�

�C�
�

x�� �


x��

�

�
� C���

� �x� �
�C�
�C�

�

x�� �


x��

�

�
�

C���
� �x� �

�

��C�
�
� 
x��

�
���� ��C��

R�
�
�

�C�
�
� 
x��

�
� � ��C�
�R�

� �

C�
�

� 
x��

�
��� � �C��
�R�

�
�

��C�
�	

�

������
Note that also the N�dependence in ����� is due to the N�dependence ������ of the norm
of jvi � If we normalize jvi properly to � we have

C
���
� �x� �
x�� � C

���
� �x� � 
x��

ei
�
�

�C �

C
���
� �x� �

�

�C�
�

x��

e�i
��
�

�
� 
x��e

i
��
�

	
�

C
���
� �x� �

�

��C

�
� 
x�� e

i
�

�

�
�

C� �
�

R
�
� 
x�� e

�i ��
�
�

C� �
�

R
�
� 
x��

�ei�

C�
	 �����a�

which obviously is N�independent� Finally
 in this case we obtain for the fourth order

C
���
� �x� �

�

��C�
�
� 
x��



ei

��
� � �e�i

��
�

�� �

��C� �
�

R
�

� 
x��

�
�ei

��
� ���C� � ��
�R�

�
�e�i

��
� � ��ei ���
�C� � �e

�i ���

R

�

� 
x��

�
��C� � �
R�

�
�

�C�
�
� 
x��

��ei
��
�

�C�
	 �����b�

which is also N�independent� More precisely
 C
�k�
� �x� and C

�k�
� �x� are independent of N if

N 
 �k and x � k�

C��x� is real and positive for all values of � and 	 up to the order calculated� However

it is not easy to read o� from ������ what might be the form for large x� Thus
 we specialize
to � � � � �

�
and calculate two further orders for C��x��

C���
� �x� �C

���
� �x� � C���

� �x� � C�	�
� �x� � � �

C���
� �x� �

�

�
f�
x�� � 
x��g �

C���
� �x� �

�

��
f�
x�� � �
x��g �

C�
�
� �x� �

�

����
f���
x�� � ��
x�� � ��
x�� � ��
x��g �

������

��



As a byproduct we veri�ed in this case two further orders of the equality j hvj �xjvihvjvi j � jC lt
� ���j

at the dual point in the low�temperature phase�

C��x� in general has a non�vanishing imaginary part and therefore is worth while
being considered in more detail� Thus
 we specialize again to the superintegrable case
� � 	 � �

� and obtain after calculating two further orders

C
���
� �x� �
x�� � C

���
� �x� � 
x��

�
�

�
� i

p
�

�

�
�

C
���
� �x� �

�

��
f
x�� � �
x��g� i

p
�

��
f�
x�� � �
x��g �

C
���
� �x� �

�

��
f�
x�� � ��
x��g� i

p
�

���
f�
x�� � ��
x�� � ��
x��g �

C
���
� �x� �

�

����
f��
x�� � ��
x�� � ���
x�� � ��
x��g� i

p
�

����
f���
x�� � ��
x�� � ��
x��g �

C
�	�
� �x� �

�

����
f��
x�� � ���
x�� � ���
x�� � ���
x�	g

� i

p
�

����
f��
x�� � ��
x�� � ��
x�� � ��
x�� � ��
x�	g �

C
�
�
� �x� �

�

�����
f���
x�� � ���
x�� � ����
x�� � ���
x�� � ����
x�	 � ����
x�
g

� i

p
�

�����
f����
x�� � ���
x�� � ���
x�� � ����
x�	g �

������
Of course
 we still have to calculate the sum ������ Thus
 changes of signs in individual
orders need not necessarily turn up in the �nal result� In fact
 it turns out that the
imaginary part of C��x� is always positive up to order � because the smallest orders are
positive and they dominate the others� However
 for su�ciently small � the real part does
indeed change signs around x � �� Although we are not able to verify if it becomes positive
again around x � �� �which would need more than the double of the orders which we have
calculated� it is in good agreement with the expected form ������ Therefore we �t ������
by a complex exponential function� In summary
 ������ indicates that

C��x� � a e

�
��i
L
� �
��

�
x
� �� � a�
x�� � �����a�

C��x� � p e�
x
�� � q
x�� �����b�

such that C��x� is of the form ����� for x 
 �� In ������ we have also taken into account

that from ������ C����
C����

� � independent of the correlation length ���
If �����a� is the correct form for C��x� we infer from ������ that L is about �� for small
�� We can also see from the higher orders that L increases with increasing � such that it
might well be singular at � � �� The correlation length � tends to zero as � � �� This
implies that � after proper re�normalization of the Hamiltonian � the mass gap becomes
in�nite at � � �� It has already been observed in 
��� that there are physical reasons to
divide ����� by

p
� which would have exactly the e�ect of in�nite mass at � � �� Fits to

������ for � � f�� � �� � ��g in the superintegrable case are given by the values in the following
table�

��



� �� a L �� p q Pmin
LPmin
��

���� ������� ������� ������� ������� ������� ������� ����� �������

���� ������ ������� ������� ������� ������� ������� ����� �������

���� ������ ������� ������� ������� ������� ������� ����� �������

Table �� Parameters for the correlation functions ������ at � � 	 � �
�

The estimates in table � have been obtained as follows� First
 �� has been estimated by

calculating Re�ln� C��x�
C��x���

���� and averaging over x� Next
 the zero of Re�e
x
��C��x�� has

been estimated by linear interpolation for two neighbouring values and L
� was obtained by

averaging� Finally
 a was estimated such that the di�erence

Re�C��x�� � ae
� x
�� cos

�
��x

L

�
������

is minimal for x � �� �� That this procedure yields reasonable �ts is demonstrated by
Fig� � which shows the stretched correlation function e

x
��C��x� in comparison to the �ts�

The �error bars� are not really error bars but given by ae
x�	
�� which gives an idea how much

the values have actually been stretched and what might be the contribution of the next
orders in the perturbation expansion� The agreement for all x not only in the real part
but also in the imaginary part is convincing�

Table � shows the values Cpert�
� �x� corresponding to Fig� �� This table also contains the

numerical results for the correlation function Cnum�
� �x� which were obtained in 
��� for

N � �� sites at � � 	 � �
� 
 � �

�
� �

x � � � � � � �

C
pert�
� �x� � ����
��������i ���	
��������i �������������i ����������
��i ������������
�i �������

Cnum�
� �x� � ������������	i ���	�������
�i �������������i �����
����
��i �����	
�������i �������

Table �� Perturbative results ������ and numerical results at N � �� sites
for the correlation function C��x� at � � 	 � �

� 
 � �
�
�

The agreement between the results of both methods is good� This shows that on the one
hand higher orders are indeed negligible in ������ for x � � and on the other hand that
the �nite chain length does not considerably a�ect the correlation function C��x��

Let us now discuss the implications of ������ under the assumption that �����a� is the
correct form for general values of the chiral angles� From the leading orders in �����a� we
read o� the following identity for the ratio of C���� and C�����

C����

C����
�

e
i
��
�


C� �
� �O����

e
i
�
�

�C ��O����
�

ei
�
�

�C � �O��
��� �����a�

On the other hand we immediately obtain from �����a�

C����

C����
� e

� �
�� e

��i
L � �����b�

��



Comparison of �����a� and �����b� leads to

L �
��

Re���
� �� � � �

ln

�
	

� cos ��� �

�
� Im���

�

������

for small values of �� It is noteworthy that we obtain the same result for the oscillation

length L if we apply a similar argument to C��x��
C��x��

in lowest non�vanishing order with

x�� x� � f�� �� �� �g� At � � �
� ������ yields the approximations L � ��
 �� � ����
 ����


��� for � � ����
 ����
 ����� The agreement with the numbers of table � is very good�
Thus
 for very high temperatures the oscillation length L is proportional to the inverse
chiral angle ���� In particular
 the oscillation vanishes smoothly for � � �� In 
��� it
was shown that for very high temperatures the minimum of the dispersion relation of the
fundamental particles is also proportional to �� More precisely
 we read o� from ����� that

the minimumof the dispersion relation is in �rst order perturbation theory at Pmin �
Re���

�
�

Thus
 we obtain from ������ for very high temperatures

PminL j	��� �� ���	� ������

Furthermore
 the second order in ����� shows that the minimal momentum Pmin decreases
with increasing � �compare also 
����� Similarly
 we read o� from ������ that the inverse
oscillation length L�� also decreases with increasing inverse temperature �� Thus
 ������
has a chance to be valid for all values of � in the massive high�temperature phase� Indeed

using the values of Pmin given in table � of 
��� we see that PminL � �� holds quite
accurately for � � ����� ���� ���� at � � 	 � �

� �compare table ��� Using numerical
methods we have checked in 
��� that PminL � �� is indeed valid within the numerical
accuracy for general values of the parameters� The identity PminL � �� can e�g� be
derived from the form factor expansion ����� if the Hamiltonian has suitable symmetries
as is demonstrated in appendix B for certain special cases� However
 it may well be that
in general this relation is not exact but an excellent approximation�

Note that even at � � 	 � �
� the correlation lengths �� and �� are clearly di�erent�

Furthermore
 �� coincides with its dual in the low�temperature phase whereas �� does not
�see 
����� Recall that for the correlation function C��x� only the spectrum in the charge
sector Q � � is relevant but C��x� comes from the Q � � sector� Using ����� this explains
the agreement of �� with � in the low�temperature phase� in this phase all charge sectors
have a spectrum that is identical with the spectrum in the Q � ��sector at the dual point
in the high�temperature phase 
����

�� The parity conserving Potts case

So far
 we have studied correlation functions for general values of the parameters and for
the superintegrable case� In this section we discuss the standard parity�conserving Z�
case in more detail and compare the correlation length to the inverse mass gap� We also
examine the dispersion relation of the particle�#anti�particle pair closer for this special case
and show that
 for general �
 there is no simple relation between the square of the energy
and the momentum like the Klein�Gordon equation�

��



First
 we note that for � � 	 � � eq� ����� simpli�es considerably and we can calculate
even higher orders�

m��� �� E������ �� �  E������ �� �
�p
�
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�
�O�����

�����

In this case the mass gap is located at zero momentum� Therefore
 we de�ned ����� as
�m����� With respect to the quality of the approximation ����� we would just like to
mention that e�g� comparison with numerical values shows that the accuracy of the series
����� is good for all � � 
�� ��� However
 ����� is an alternating sum and gives only good
approximations if an even number of orders is used� In particular
 close to the phase
transition � � � higher order contributions do not always improve the approximation
which re"ects that close to � � � this perturbation series is slowly convergent�

It is well�known that the critical exponent for m��� at � � � equals 	

 � The series eq�

����� can be used to verify this critical exponent with a DLog�Pad$e analysis� In fact
 this
check has already been performed in 
��� One can also use ����� or a numerical evaluation
of the mass gap m��� in order to test the critical behaviour throughout the massive high�

temperature phase� One �nds that �����
�
	m��� is a very slowly varying function �see also


���
����� This means that the normalization of the Hamiltonian ����� is indeed meaningful
even far away from the critical region�

Next we will discuss the correlation function C��x� for � � 	 � �� If a statistical
system has an isotropic �eld theory as limit
 the correlation length is related in this limit
to the inverse of the smallest gap between the ground state and the �rst excitation 
����
Therefore
 one expects a relation � � m����� 
���� Note that for small values of � we expect
a di�erent behaviour according to ������� �� � ln

�
	
�

���
� We will now study these two

relations more closely by considering the correlation function C��x�� First
 we specialize
������ to � � 	 � � and calculate two further orders� This leads to�
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Using ����� one can calculate the correlation length �� by the procedure described in the
previous section� We just mention a few pairs 
�� ����
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Fig� � shows a plot including more estimates for the correlation length� At � � � there
is no correlation between di�erent sites
 i�e� the correlation length is zero� One observes
that it increases drastically for � 
 �� It is clearly di�erent from zero even for very small
values of �� We have also plotted the estimate ������ in Fig� �� This crude estimate �ts
the numerical results surprisingly well for all values of � accessible to us� In particular

it nicely reproduces the behaviour for small � as it is expected from our derivation of the
estimate� In Fig� � we also plotted the properly normalized inverse mass m������ The
agreement is good for � 
 ���� For � � ��� one observes a clear disagreement� Note that

in this region C��x�
C��x��� � e

�
�� � �� and one should therefore expect that at least in this

region the �nite lattice spacing is important�

It has been observed in 
��� that for � � 	 � � the dispersion relation ����� agrees
with a Klein�Gordon dispersion relation up to order ��� Furthermore
 it was shown in 
���
that at the second order phase transition � � 	 � �
 � � � the dispersion relation is of
Klein�Gordon type with mass m��� � �� Using the abbreviation

K �� � sin

�
P

�

�
�����

for the lattice analogue of the momentumwe can specialize ����� to � � 	 � � and calculate
two further orders� This yields the dispersion relation

E�K� �� E����P� �� �� �  E����P� �� �� �

�
�p
�

�
� � ��K� � ���� ��

�
�K� � �K� � �� �

��

��
��K
 � ��K� � ��K� � ���

� ��

���
���K� � ���K
 � ���K� � ���K� � ����

�
�	

����
���K�� � ���K� � ����K
 � ����K� � ����K� � �����

	
�O��
�

�����
for the two fundamental quasiparticles� The Klein�Gordon dispersion relation predicts

E�K� �
p
m��� � a���K� �m��� � a���
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where we have included a free normalization constant a��� which corresponds to the ve�
locity of light� Rewriting ����� in the form ����� leads to

E�K� � m��� �
�
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In ����� the coe�cients ofKn with lowest order in � agree with the Klein�Gordon dispersion
relation ����� 	�� However
 usingm��� as in ����� and �tting a��� from the coe�cient ofK�

all but these leading orders disagree with ������ Thus
 although a Klein�Gordon dispersion
relation is certainly a good approximation to ����� it is unfortunately not the exact form�

It happens quite frequently in two�dimensional quantum �eld theories that the dispersion
relation is sin�Gordon or sinh�Gordon� However
 even these possibilities can be ruled
out because the �rst �ve orders of these dispersion relations agree with Klein�Gordon
�sin�x�� � O�x
� � x� � sinh�x�� � O�x
� � but the deviation from Klein�Gordon occurs
already at order K�� Therefore we consider an even more general dispersion relation of
the form

E�K� �
s
m��� �

g �b���a���K��

b���
�

g�x� � x� x� � c�x
� � c�x

� � c	x
	 �O�x
�

�����

which contains the Klein�Gordon relation ����� for b��� � �� In particular
 ����� is a
good approximation to the Klein�Gordon dispersion relation for small b���� ����� would
also include both the sin�Gordon and sinh�Gordon relations for c� � � but since this has
already been ruled out c� has been absorbed in b���� Determining from the �rst orders
of the Taylor expansion of ����� with respect to K� �rst m���
 then a���
 b��� and c� it
turns out that c� depends on �� Thus ����� can be ruled out if the function g is required
to be universal for all ��

	� Convergence of single�particle excitations

As far as the proof of the quasiparticle picture is concerned the main open question is the
convergence of the single�particle states
 or equivalently the existence of the limits N ��
of the corresponding eigenvalues of the Hamiltonian� We have argued in section � that
convergence of the perturbation expansions is su�cient to guarantee the existence of the
limits N � �� Therefore we will discuss the radius of convergence for the perturbation
expansion of the single�particle excitations in this section�

For bounded operators �in particular �nite dimensional ones� one could use criteria involv�
ing operator norms similar to those for v� Neumann series� Unfortunately
 the potential

for  H
�n�
N as de�ned in ����� and ������ is unbounded if N is not �xed� Thus
 we have to

apply the slightly more complicated Kato�Rellich theory of regular perturbations� Reviews
of this subject can be found e�g� in the monographs 
���
���� The main results we are going
to use were originally published in 
���
���� The theory of Kato and Rellich applies in
particular to operators of the form �����
 i�e� H��� � H� � �V �

Suppose that the single�particle eigenvalues  E have a non�zero distance from the
scattering eigenvalues �the continuous spectrum� at � � �� Then it is clear from the
discussion in the previous sections that these eigenvalues are non�degenerate and isolated�

In particular
 the resolvent � H
�n�
N ��� � z��� is bounded for j E � zj 
 �� Restricting

	� According to 
��� one should have E�K� � �jKj at � � �� At � � � the series �����
does not really converge any more� Nevertheless
 it seems that ����� is compatible with
E�K�� � �K� at � � ��

��



to the hermitean case
 this is su�cient to guarantee that the  H
�n�
N ��� are an analytic

family in the sense of Kato� In this case
 the Kato�Rellich theorem �
��� Theorem XII���
may be used to guarantee a non�zero radius of convergence r� 
 � for the single�particle

eigenvalues of  H
�n�
N ����

In order to obtain explicit estimates of the radius of convergence one needs the inequality

kV jai k � VkH� jai k�Kk jai k �����

on D�H�� which in our case is dense in the the complete Hilbert space H� Then
 the
isolated point eigenvalues of H��� are convergent at least for

� � r� �� V�� �����

as long as these eigenvalues do not come in contact with continuous spectrum 
���� On
the one hand this criterion is very simple
 on the other hand one must estimate not only
the constant V but also examine the level crossings between single�particle excitations and
scattering states� There is another estimate r� that guarantees the separation of eigenvalues
as well but gives smaller radii of convergence� For self�adjoint H� with isolated eigenvalue

E
���
� where the nearest eigenvalue E

���
� has distance � �� jE���

� � E
���
� j ���� � kg�E���

� �k�
the perturbation expansion of E���� is convergent for

� � r� ��
�

�


K � V�jE���

� j� ��
� �����

and there are no crossings with neighbouring levels� In order to compare the estimates

����� and ����� let us assume K � � and jE���
� j � �� For this almost optimal case one has

r� � �r� showing that the criterion ����� is much more restrictive�

Let us now apply these general results to the present case ofZn�spin quantum chains�
For non�degenerate single�particle eigenvalues the Kato�Rellich theorem can be applied to
guarantee a positive radius of convergence r�� Then we know from section � and appendix

A that the spectrum of  H
�n�
N ��� is a quasiparticle spectrum for � � r�� This fact can be

used to calculate the constant V and obtain explicit estimates r� �where level crossings still
have to be discussed� or r�� One can obtain the estimate ����� with K � � using Schwarz�
inequality�

V �� sup
jai �H

ha j  V jai
k H�n�

N�� jai k
� �����

In general
 this supremum need not be �nite but then it is very di�cult to ensure conver�
gence at all� In our case
 the important observation is that due to the quasiparticle picture
we can evaluate ����� exclusively from the single�particle excitations� To see this one per�
forms a �rst order expansion in � for any composite particle state
 compares coe�cients

and uses the quasiparticle property to expand the expectation values of  H�n�
N�� and  V

in single�particle excitations� Thus
 V can be calculated as

V � max
Q�P

P hhsQk V ksQii P
k H�n�

N��ksQii P k
� �����

��



In order to implement this program explicitly we specialize to the case of Z� with
the parametrization ������� At � � � both single�particle eigenvalues are isolated for
��

�
� 	 � �

�
� This guarantees a non�zero radius of convergence r��

The simplest case is the parity conserving case � � 	 � �� Here
 the maxima are located
at zero momentum P � � and both charge sectors are degenerate� Furthermore
 we have

k H���
N��ksQii �k � � � E

���
� � From ����� we can therefore read o� V � �

� 
 or in terms of
radii of convergence

r� �
�

�
� r� �

�

�
� for n � �� � � 	 � �� �����

r� � ����� is certainly too small which can easily be seen applying a naive ratio test to

������ Extrapolating m���

m��
�� to � � � one obtains an estimate for the radius of absolute
convergence of about ���� Thus
 for � � 	 � � the radius of convergence is expected to
be close to the boundary of the phase � � � which is also supported by the calculations in
section ��

For general angles � � 	 � �
� 
 the free part of the Hamiltonian k H���

N��ksQii �k is mini�
mized for Q � � and the potential P hhsQk V ksQii P is maximal for P � �

�
� Thus
 we read

o� from ����� V � �p� sin ����� ����
� Furthermore
 one has � � � sin

�
���
�

�� � sin ����� �
and E���

� � � sin
�
���
�

�
� This amounts to the following radii

r� �
p
� sin

�
� � 	

�

�
� r� �

p
� sin

�
���
�

� �
� sin

�
���
�

�� sin ����� ��
�
�
� sin

�
���
�

�� sin ����
�

�� �����

for n � �
 � � 	 � �
� � For 	 � �

� the situation is contrary to that at � � 	 � �� The
Q � � particle state becomes degenerate with two Q � � scattering states at 	 � �

�
such

that the radius of convergence must tend to zero for 	� �
� � Whereas r� has precisely this

property
 r� tends to ����� � � � which is certainly too large�

Because for small 	 we would prefer the large radius of convergence r� but at 	 � �
�

this is much too large and r� seems more appropriate we have to enhance the estimate
given by r� by a discussion of level crossings between single�particle states and scattering
states� For � � 	 � �

� the �rst level crossing of this kind will take place between the Q � �
single�particle excitation and a two Q � � particles scattering state�

It is very di�cult to determine those values of � explicitly and precisely where they
take place� Therefore
 we will use the �rst order approximation of the perturbation ex�
pansion� We are looking for those values of � where a single point P exists such that
x �� � E����

P
� � �� 	� � E����P� �� 	� vanishes� The fact that we are looking for no real

crossings but x � � implies dx
dP � �� Inserting ����� and ����� up to �rst order leads to the

condition
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�
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Eq� ����� has a solution

P �
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that does not depend on �� Now we can solve the linear equation x j	�� � for the value
��� One obtains

�� �
cos

�
�
�

��p� sin ��� �
cos



�
�

�
�
p
� sin



�
�

� � ������

Fig� � shows a plot of the estimates ����� and ������ for the self�dual case 	 � �� Note
that r� and r� are independent of �� However
 we have assumed that the Hamiltonian is
hermitean and therefore � must be real� For 	 close to �

� 
 �� is smaller than r� which is an
apparent contradiction because there are no level crossings for � � r�� Remember
 however

that �� has been calculated approximately such that this di�erence is not signi�cant� At
� � 	 � � we �nd �� � �� This is reassuring because perturbation expansions should not
be valid beyond the second order phase transition at � � �� Although �� was estimated by
looking at non�zero momenta there are also level crossings in the zero momentum sectors
at � � �� Thus
 the radius of convergence is indeed smaller than r�� Still
 our results
agree in magnitude with the intuitive expectations from the �ratio test�� The dots in Fig�
� indicate the two models whereof the spectra have been presented in Fig� � and Fig� �
of 
���� For the left dot one expects a converging perturbation expansion whereas in the
other case it should not converge �compare 
����� Indeed
 both estimates r� and �� make
this distinction�

For completeness we have also included an estimate for the boundary of the massive high�
temperature phase in Fig� �� At this boundary
 levels of the Q � � particle with generically
non�zero momentum cross with the ground state� Its explicit location has been obtained
estimating the minimum of the dispersion relation ����� with P � �

� and solving the second

order approximation  E����
�
� � �� �� � � for �� At � � � the agreement with the exact

value � � � is excellent� For small non�zero angles the true value is smaller than � but our
approximation gives values that are slightly larger than �� Also at � � �

�
we observe a small

deviation from the exact value � � �������� � � � 
���� Our estimate yields � � ����� � � �
�the agreement with r� is a coincidence��

The level crossings transition �� divides the massive high�temperature phase of the Z��
chiral Potts model into two parts which we label I and II� In part I the derivation of the
quasiparticle picture as presented in section � and appendix A is rigorous� Thus
 in regime
I the spectrum is a quasiparticle spectrum with two fundamental particles existing for
all momenta� In 
��� we have presented numerical evidence that regime II probably also
exhibits a quasiparticle spectrum with two fundamental particles where the Q � � particle
has the unusual property that it exists only in a limited range of the momentum P � At
	 � � � �

�
this statement has been proven rigorously in 
���� We expect that the idea

to approximate multi�particle states by putting single�particle states of �small� chains with
a su�cient separation on a longer chain and to use the �nite correlation length in order
to ensure vanishing of boundary terms �which we cannot show directly like in appendix
A any more� will apply also in regime II for general angles �
 	� However
 in contrast to
section � we loose control over the fundamental Q � � excitation because the perturbation
series does not converge any more and there is no guarantee for the completeness of this
construction� At least it is plausible to still expect a quasiparticle spectrum in regime II
with two fundamental particles of which the Q � � particle may have a Brillouin zone that
is smaller than the interval 
�� ����

��




� Conclusion and outlook

In this paper we have presented an argument using perturbation theory proving that
the massive high�temperature phases of all Zn�spin quantum chains exhibit quasiparticle
spectra with n�� fundamental particles� Since the argument relies on perturbation theory
it applies rigorously only to very high temperatures� Due to the perturbative nature of
the details we were not able to give it any predictive power for those case where some of
the fundamental particles cross with scattering states� For these cases one needs di�erent
methods
 e�g� Bethe ansatz techniques 
���
��� or numerical methods 
���� Nevertheless

the basic idea of approximating a multi�particle state by single�particle states sitting on
subparts of the chain might be applicable in the entire massive high�temperature phase�
One could even speculate that a similar argument can be applied to Zn�spin models in
higher dimensions as well�

A re�ned �but less rigorous� version of this argument can be used to control the �nite�size
e�ects of k�particle states showing in particular that the energy of the excitations does not
pick up any corrections at order �

N
�

Furthermore
 our derivation of the quasiparticle picture involving n� � fundamental par�
ticles applies to the scaling region near the conformal point � � �
 � � 	 � �
 the only
non�rigorous part of the proof being the radius of convergence� This region �� � �
 �
 	
small� corresponds to perturbations of conformal �eld theories with the thermal operator

�� � ��� and a small additional perturbation of the type presented in 
��� that breaks
parity�

Using duality 
��� our results about the quasiparticle spectra can be pulled over to the
massive low�temperature phase of Zn�spin quantum chains�

Having derived such a quasiparticle picture the main open problem is to �nd the corre�
sponding massive �eld theory and to obtain the associated scattering matrix�

We also studied the correlation functions using a perturbation expansion for the ground
state of the Z��model� Although this approach is limited to short ranges
 we were not
only able to estimate correlation lengths in the massive high�temperature phase but it also
turned out that the correlation functions have oscillatory contributions� For very high
temperatures the oscillation length is proportional to the inverse of one of the chiral angles
L � ���� We further observed that the oscillation length is closely related to the minimum
of the dispersion relations for general values of the parameters� The relation LPmin � ��
is valid on the lattice with a much better accuracy than the well�known relation � � m���
For special values of the parameters we were able to derive the relation LPmin � �� from
a form factor decomposition but one should certainly understand it better in the general
case�
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Appendix A� Proof of quasiparticle picture

In this appendix we present a modi�ed version of the proof in section � that the spectrum
of the Hamiltonian ����� can be explained in terms of n� � fundamental quasiparticles�
The main steps of the proof will be as presented in section �� However
 instead of consider�
ing general multi�particle states we will go directly back to the single�particle excitations�
The corresponding perturbative eigenstates are given by ������ One also has to be careful

where it is permitted to deal directly with  H
�n�
N or where one should rather considerH

�n�
N

�rst�

In this appendix we will concentrate on the vanishing of boundary terms� Not all arguments
presented in section � will be spelled out in detail again� In particular
 the limiting proce�
dures are taken for granted� This explicit presentation has been shifted to this appendix
because the explicit formulae are a bit nasty although the ideas are quite simple�

In order to be able to discuss r�particle states we �rst write down the generalization
of ����� to any partition of N in r arbitrary integers Nj 
 � �N �

Pr
j��Nj��

H
�n�
N � H

�n�
N�

� ��� � � �� ���H
�n�
Nj

� ��� � � �� ���H
�n�
Nr
�

rX
j��

O�H�n�
Nj
� �

TN � ����O�TNr
�� � � � ��� �O�TN��� TN� � � � �� TNr

�

�A���

Let �j ��
Pj��

i�� Ni ��� �� ��� Then
 the boundary operators O�H�n�
Nj
� and O�TNj

� are
given by

O�H�n�
Nj
� � �

n��X
k��

�k�
k
�j�Nj

n
�n�k�j�� � �n�k�j�Nj��

o
��

�� �O�TNj
�
� j i�i� � � � i�j�Nj

i�j�Nj�� � � � i�j
��Nj
�i�j
��Nj
��� � � � iN i
�j i�i� � � � i�j
��Nj
�i�j�Nj�� � � � i�j�Nj

i�j
��Nj
��� � � � iN i �

�A���

It will be useful to verify �rst that additivity of energy and momentum holds for � � ��
To this end we show that a composite particle state

kN �Qtotii Ptot �� ksQ� ii P� � � � �� ksQr ii Pr �A���

has approximately energy E ��
Pr

j��EQj

 momentum Ptot ��

Pr

j�� Pj and total charge

Qtot ��
Pr

j��Qj mod n� Recall that we have de�ned all ksQj ii Pj in the complete Hilbert
spaceH but it is useful to think of them as elements of HNj


 i�e� ksQj ii Pj � HNj
� Applying

�A��� to these states one obtains for the energy�



H
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N �E

�
kN �Qtotii Ptot �

rX
j��
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�kN �Qtotii Ptot

�
rX

j��
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�n�
Nj

�EQj

�
ksQj ii Pj � � � �� ksQr ii Pr

� �

�A���
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where we have used that O�H�n�
Nj
� vanishes at � � � �compare �A��� �� Thus
 we veri�ed

that additivity of energy is exact at � � ��

Using �A��� and �A��� one obtains for the momentum

TNkN �Qtotii Ptot �
rY

j��

�
���O�TNj

�
� �

TN�ksQ� ii P�
�� � � �� �TNr

ksQr ii Pr
�

�
rY

j��

�
���O�TNj

�
�
eiPtotkN �Qtotii Ptot

�eiPtotkN �Qtotii Ptot � eiPtotksQ� ii P�
�� � � �

�� ksQr ii Pr
� eiPtotksQ� ii P� � � � �� ksQr ii Pr

�A���

where �
�� � denotes the modi�cations that occur when shifting in the entire tensor product

instead of acting in its individual parts� Locally
 these modi�cations look as follows�

ksQj ii Pj
�� ksQj
� ii Pj
� � ksQj ii Pj � ksQj
�ii Pj
�

�
e�iPj
�p
Nj��

NjX
k��

e�ikPjp
Nj

j� � � � Qj��z�
position k��

� � � �Qj��i� j� � � � �i

� e�iPjp
Nj

j� � � � �Qji � ksQj
�ii Pj
�
� ��

�A���

In �A��� we have used the explicit form ����� of the single�particle states ksQj ii Pj � The
vanishing of the boundary terms forNj �� is ensured by the normalization factors N

� �
�

j �
Thus
 we have also shown that kN �Qtotii Ptot approximates an eigenstate of the translation
operator to total momentum Ptot for � � ��

For � 
 � we have to consider single�particle eigenstates kNj �Qjii Pj that are derived
by perturbation series from the states ksQj ii Pj � These states have the form

kNj �Qj ii Pj � ksQj ii Pj �
X
�
�

��
X

i
�j�
�


���
i
�j�
Nj

�Qj mod n

�fi
�j�
k

���g���
�

�
���

i
�j�
� �����i

�j�
Nj

ki�j�� � � � i
�j�
Nj
ii Pj � �A���

It is important to note that the explicit form of the Hamiltonian ����� implies that at most
�� � � spins ik are di�erent from zero in the �th order of the perturbation expansion� In

passing we mention that we do not need the explicit form of the �
���

i
�j�
� �����i

�j�
Nj

and therefore

the argument also applies to the more general Hamiltonian ����� without modi�cation�

We should stress that the states �A��� are in general not convergent for Nj �� although

the corresponding eigenvalues of  H
�n�
Nj
and TNj

converge �compare e�g� ������ �� However


��



after re�normalizing kNj �Qjii Pj to norm � we could again think of it as lying in H for all
Nj because the �th order is independent of Nj for � � Nj �

An r�particle state now is approximated by

kN �Qtotii Ptot �� kN��Q�ii P� � � � �� kNr�Qrii Pr � �A���

Note that �A��� cannot be directly related to �A��� by a perturbation expansion�

First
 we consider the translation operator� Thus
 we have to generalize �A��� to the states
�A���
 �A����

TNkN �Qtotii Ptot �
rY

j��

�
�� �O�TNj

�
� �

TN�kN��Q�ii P�
�� � � �� �TNr

kNr�Qrii Pr
�

�
rY

j��

�
�� �O�TNj

�
�
eiPtotkN �Qtotii Ptot

�eiPtotkN �Qtotii Ptot � eiPtotkN��Q�ii P�
�� � � �

�� kNr�Qrii Pr
� eiPtotkN��Q�ii P� � � � �� kNr�Qrii Pr �

�A���

The modi�cations introduced by
�� in �A��� are more complicated than �A���� Locally


they look as follows�

kNj �Qjii Pj
�� kNj���Qj��ii Pj
� � kNj �Qj ii Pj � kNj���Qj��ii Pj
�

�
�p

Nj

p
Nj��

X
�����

����

� �X
i
�j
��
�


���
i
�j
��
Nj
�

�Qj
� mod n

�fi
�j
��
k

���g���
�

i
�j
��
mj
�

��i
�j�
kj

X
i
�j�
�


���
i
�j�
Nj

�Qj mod n

�fi
�j�
k

���g���
�

e�ikjPj����
i
�j�
� �����i

�j�
Nj

j i�j�kj�� � � � i
�j�
Nj
i
�j�
� � � � i

�j�
kj��i

�j���
mj
�

i�

e�imj
�Pj
��
���

i
�j
��
� �����i

�j
��
Nj
�

j i�j���
mj
��� � � �i

	

� �p
Nj

X
���

��

� ��X
i
�j�
�


���
i
�j�
Nj

�Qj mod n

�fi
�j�
k

���g���
�

i
�j�
mj

���

e�imjPj�
���

i
�j�
� �����i

�j�
Nj

j i�j�mj�� � � � i
�j�
Nj
i�j�mj

i
	
� kNj���Qj��ii Pj
�

� ��
�A����

The explicit form of �A���� may be slightly confusing� Note
 however
 that the vanishing
of the boundary terms is guaranteed by the same argument as in �A���� It is su�cient to

��



guarantee that the coe�cients of �� in the boundary terms become small with respect to
the coe�cients of the eigenstates� The index set of the sums & and && has precisely this
property� The sum & has at most ���� non�zero terms whereas the complete momentum
decomposition has Nj�� terms� Thus
 the complete sum & is suppressed by the factor

N
� �

�
j��� Also the sum && has ���� terms �or less� compared to Nj for the complete fourier

transform such that it is suppressed by the normalization factor N
� �

�
j � This shows that

kN �Qtotii Ptot indeed approximates an eigenstate of the translation operator with total
momentum Ptot�

Translating these statements into weak language we conclude the following� The scalar
product of �A���� with an arbitrary momentum eigenstate tends to zero if we rescale both
states such that they lie on the unit sphere� On the other hand
 for any N a normalized
true eigenstate of the translation operator TN exists such that the scalar product of this
state with kN �Qtotii Ptot tends to its norm for N ���

Now we have to consider the generalization of �A��� to � 
 ��



H

�n�
N �E

�
kN �Qtotii Ptot �

rX
j��

O�H�n�
Nj
�kN �Qtotii Ptot

�

rX
j��

kN��Q�ii P� � � � ��


H

�n�
Nj

�EQj

�
kNj �Qjii Pj � � � �� kNr�Qrii Pr

�
rX

j��

O�H�n�
Nj
�kN �Qtotii Ptot �

�A����
The boundary terms explicitly read as follows�

O�H�n�
Nj
�kN �Qtotii Ptot � kN��Q�ii P� � � � �

n��X
k��

�k
X
���

����
X

i
�j�
�


���
i
�j�
Nj

�Qj mod n

�fi
�j�
k

���g���
�

�
���

i
�j�
� �����i

�j�
Nj

�p
Nj

�
Nj��X
m��

e�imPj j �i�j�m � k mod n�i
�j�
m�� � � � i

�j�
m���i

�j�
m�� � k mod n�i � kNj���Qj��ii Pj
�

� e�imPj j i�j�m � � � i
�j�
m���i

�j�
m�� � k mod n�i �



�n�k� kNj���Qj��ii Pj
�

�	
� � �� kNr�Qrii Pr �

�A����

The crucial point in �A���� is that the states j i�j�m � � � i
�j�
m��i do not combine to momentum

eigenstates any more� More precisely
 at �xed order � of the perturbation expansion one
obtains at most �� �� terms of a complete momentum eigenstate� Therefore
 these states

are suppressed for Nj su�ciently large by the normalization factor N
� �

�
j � In other words�

If we project �A���� at �xed order in � onto any momentum eigenstate and correct by
the norm of kN �Qtotii Ptot the result tends to zero� Note that we may not draw direct

��



conclusions for the limit of H
�n�
N because the single�particle energies EQj

do not converge�

But for  H
�n�
N the single�particle energies  EQj �� converge and from �A����
 �A���� we

may conclude that the states �A��� behave precisely like r�particle states in the limit
N ���

We have shown so far that the quasiparticle excitations describe a subset of the spec�

trum of  H
�n�
N in the weak limit� To complete the proof we have to argue that this is

already the complete spectrum� This is guaranteed by the fact that for any �nite M the
complete Hilbert space HM can be mapped onto a subspace of HN �N su�ciently large�
that is spanned precisely by the states �A���� One natural choice is the mapping

kQ� � � � QM ii Ptot �� kN��Q�ii P� � � � �� kNM �QM ii PM � HN � �A����

This completes the proof�

Let us conclude with a summary of what we have assumed and what we were able to
prove� Of course
 the explicit form of the Hamiltonian ����� played an important r�ole� We
needed three facts�

�� For some values of the parameters �� � �� the quasiparticle spectrum is trivially
guaranteed�

�� In the vicinity of this point �� 
 �� only nearest neighbours interact�
�� The Hamiltonian ����� possesses a Zn�symmetry�

It might seem that the third property was convenient mainly for notational reasons because
it straightforwardly encoded property ��� However
 we also needed the explicit form of the
Hamiltonian ����� in order to ensure the absence of further selection rules �at least at
� � ��� Thus
 although we did not rely heavily on property ��
 we doubt that our proof of
the quasiparticle spectrum can easily be generalized to models having more complicated
selection rules�

We further required that

�� The perturbation expansions for the single�particle states converge�

Note that we did not assume the Hamiltonian H
�n�
N to be hermitean nor did we require it

to be diagonalizable � only the existence of the single�particle eigenvalues is needed�

Already in section � we inferred from property �� �and �� � that the limits N � � of

the single�particle eigenvalues of  H
�n�
N exist� The proof presented in this appendix shows

that under these assumptions

a� The weak limits of the operators TN and  H
�n�
N exist


b� The weak limits can be �diagonalized�
 i�e� the projection�valued measure of ������
does indeed exist
 and

c� In this limit their spectrum can be expressed in terms of quasiparticle excitations�

In particular
 the spectrum of the weak limit of  H�n�
N is explicitly known if the

dispersion relations of the single�particle excitations can be calculated�

��



Appendix B� Symmetries of the Hamiltonian and the oscillation length

In this appendix we �rst discuss the behaviour of the Hamiltonian ����� under parity for
special values of the parameters� One �nds symmetries that were observed numerically in

��� for the integrable submanifold and can be derived e�g� along the lines of appendix B
of 
���� The resulting identities will subsequently be used in order to derive the values of
the oscillation length given in ����� from the form factor expansion ������

Symmetries of the Hamiltonian�

Denote the projection of the Hamiltonian H
�n�
N in eq� ����� onto the spaces HP�Q

N in eq�

������ by �H
�n�
N �P�Q��� Furthermore
 introduce a parity operator P by the following action

on the states ������

r�P� j i� � � � ij � � � iN i �j i�iN iN�� � � � ij � � � i�i � �B���

Note that P���xP � ���x
 P���xP � ���x� Then one has the following identities �see
also 
�����

�k � �n�k � PH
�n�
N �P�Q�P � H

�n�
N ��P�Q� �

���k � ��n�k and �k � R � PH
�n�
N �P�Q�P �



H

�n�
N ��P�Q�

��
�

���k � ��n�k and �
�
k � e���izk�k � PH

�n�
N �Pm�Q � P�Q�P �



H

�n�
N �Pm�Q � P�Q�

��
�B���

where the symmetry of the last line holds for those Pm�Q satisfying Pm�QQ�� � �z � �
mod � as well as ei�Pm�Q being an nth root of unity� Note that with the parametrization
������ the cases covered by �B��� are precisely those covered by ����� with z � �

n
� In this

case
 Pm�Q � ��� � �Q
n
� is a solution to Pm�QQ�� � ��

n
� � lying in the interval 
��� ��

� the other solution is shifted by �� The solution Pm�Q � ��� � �Q
n
� corresponds to the

minimum in the dispersion relation of the single�particle state in this charge sector �see

���
�����

The �rst two lines of �B��� follow immediately by looking at PH�n�
N P
 keeping in mind

that the translation operator de�ned in ����� satis�es PTNP � T��N � T�
N � The derivation

of the third line of �B��� is more complicated� For Q invertible in Zn it can be shown
choosing a suitable basis �see appendix B of 
����� For z � �

n
and N � � mod n one can

follow the lines of eqs� �B���� � �B���� in appendix B of 
��� to elegantly prove the third
line of �B����

In the case z � �
n
and N � � mod n we introduce an operator U following 
��� by

U �� P

�YN

x��
���xx

�
� �B���

Now
 observing that

U���xU
�� � ���x � U���xU

�� � ��x���x �B���

��



one concludes that U H
�n�
N U�� �



H

�n�
N

��
for ��k � ���k�k� Finally one veri�es that

TNUki� � � � iN ii P � PT��N

�YN

x��
���xx

�
ki� � � � iN ii P � U �Q��e�iP ki� � � � iN ii P �B���

where �Q is the charge operator given by eq� ������ Eq� �B��� implies that the operator
U maps a state of charge Q and momentum P to a state of charge Q and momentum
���Q

n
� P � After putting things together one obtains the desired result�

Oscillation length from symmetries of the Hamiltonian�

Assume that the Hamiltonian H�P�Q� projected onto momentum and charge eigenspaces
with eigenvalues P and Q has one of the following symmetries�

PH�Pm�Q�P�Q�P � H�Pm�Q�P�Q� or PH�Pm�Q�P�Q�P � �H�Pm�Q � P�Q���

�B���
with some Pm�Q depending on the charge sector Q� Assume furthermore that Pjvi � � and
that �� jvi has charge Q� Then the oscillation length L of the correlation function C��x�
satis�es

LPm�Q � �� � �B���

Note that this is true for more general Hamiltonians H�P�Q�
 but it covers in particular
the case �B��� for the Zn�chiral Potts model�

For a proof of �B��� we start from the form factor expansion ����� which in the present
case becomes

C��x� �
X
r

Z ��

�

dP eiPx
jhP�Q� r j �� jvi j�

hv jvi �B���

where we have only written the quantum numbers P and Q explicitly and comprised the
other ones in the label �r�� First we observe that P��P � ��� If the Hamiltonian satis�es
PH�Pm�Q�P�Q�P � H�Pm�Q�P�Q�
 then eigenstates of momentumPm�Q�P are mapped
under parity to eigenstates of momentumPm�Q�P � This means that h�Pm�Q�P �� Q� r j �� j
vi � h�Pm�Q � P �� Q� r j �� jvi � If the symmetry involves the adjoint of the Hamiltonian
one �nds h�Pm�Q � P �� Q� r j �� j vi � h�Pm�Q � P �� Q� r j �� j vi �� Thus
 the following
identity is valid in both cases�

jh�Pm�Q � P �� Q� r j �� jvi j� � jh�Pm�Q � P �� Q� r j �� jvi j� � �B���

Now we return to the form factor expansion �B����

C��x� �
X
r

�����
Pm�Q��Z
Pm�Q

dP eiPx
jhP�Q� r j �� jvi j�

hv jvi �

Pm�QZ
Pm�Q��

dP eiPx
jhP�Q� r j �� jvi j�

hv jvi

�����
�
X
r

�Z
�

dP

�
ei�Pm�Q�P �x

jh�Pm�Q � P �� Q� r j �� jvi j�
hv jvi

�ei�Pm�Q�P �x
jh�Pm�Q � P �� Q� r j �� jvi j�

hv jvi
�

� eiPm�Qx
X
r

�Z
�

dP � cos�Px�
jh�Pm�Q � P �� Q� r j �� jvi j�

hv jvi
�B����

��



where the last equality follows from �B���� This shows that C��x� is of the form

C��x� � e
��ix
L f�x� �B����

with L satisfying �B��� and f�x� is given by the remaining integral in �B���� which is
clearly real�

Note that if the Hamiltonian has several di�erent Pm�Q such that �B��� holds �which applies
to �B���� one obtains di�erent expressions for C��x� involving di�erent L and f�x�� The
suitable one among them can be singled out by demanding e�g� f�x� 
 � for all x� Our
explicit computations indicate that this requirement �which means that the oscillations are
exclusively encoded in the phase factor� indeed leads to the oscillations lengths presented
in ������

��
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Fig. 1: Correlation for Γ in the high-temperature phase at φ = ϕ = π/2, λ = 1/2

(x))Γ) Re(Cξexp(x/

(x))Γ) Im(Cξexp(x/

 x/16.4)π0.59 cos(2 

 x/16.4)π0.59 sin(2 

Fig� �� Correlation function C��x� stretched by e
x
�� in comparison to the �ts �����a� at

� � 	 � �
� 
 � �

�
� � The �error bars� are given by ae

x�	
�� which conveys an idea

how much the values have actually been stretched� The oscillatory contribution
to C��x� is clearly visible�
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Fig. 2: Correlation length for CΓ(x) in the high-temperature phase at φ = ϕ = 0
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Fig� �� Correlation length for C��x� in the massive high�temperature phase on the parity
conserving line � � 	 � �� The points indicate estimates obtained from a per�
turbative evaluation of C��x�� The lines indicate the approximation ������ for ��
and the properly normalized inverse mass gap m������
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Fig. 3: Radii of convergence for n = 3 and hermitian Hamiltonian
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Boundary of the phase

Fig� �� Radii of convergence and boundary of the massive high�temperature phase for the
hermitean Z��chain� r� is an estimate ensuring convergence if no level crossings
between point and continuous spectrum occur� The estimate r� also ensures the
absence of level crossings� The perturbation series are de�nitely convergent for
� � r� although the true radius of convergence is larger� It extends until the
value �� where the �rst level crossings between fundamental quasiparticles and
scattering states occur� �� has been approximated using a �rst order perturbation
expansion which is surprisingly accurate�
The boundary of the massive high�temperature phase close to � � � has been
approximated using a second order perturbation expansion�
Note that r� and r� are independent of � up to the order calculated whereas for
�� we put 	 � ��
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