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Recent magnetization and susceptibility measurements on Cu

3

Cl

6

(H

2

O)

2

�2H

8

C

4

SO

2

by Ishii et.al.

[J. Phys. Soc. Jpn. 69, 340 (2000)] have demonstrated the existence of a spin gap. In order to explain

the opening of a spin gap in this copper-trimer system, Ishii et.al. have proposed a frustrated trimer

chain model. Since the exchange constants for this model have not yet been determined, we develop a

twelfth-order high-temperature series for the magnetic susceptibility and �t it to the experimentally

measured one. We �nd that some of the coupling constants are likely to be ferromagnetic. The

combination of several arguments does not provide any evidence for a spin gap in the parameter

region with ferromagnetic coupling constants, but further results e.g. for the magnetization process

are in qualitative agreement with the experimental observations.

PACS numbers: 75.50.Ee, 75.40.Mg, 75.45.+j

I. INTRODUCTION

The trimerized S = 1=2 Heisenberg chain in a strong

external magnetic �eld has already received a substan-

tial amount of theoretical attention, one reason being a

plateau at one third of the saturation magnetization in

the magnetization curve [1{5]. Some frustrated variants

of the trimer model have also been investigated [6{10]

since they can be shown to have dimer groundstates and

thus a spin gap.

While many materials with trimer constituents exist

(see e.g. [11]), the behavior in high magnetic �elds has

been investigated only in a few of them, for instance

in 3CuCl

2

�2dioxane [12]. Also Cu

3

Cl

6

(H

2

O)

2

�2H

8

C

4

SO

2

belongs to the known trimer materials [13,14], but its be-

havior in a strong magnetic �eld has been measured only

recently [15] and at the same time its magnetic suscep-

tibility has been remeasured. Surprisingly, a spin gap of

about 3.9Tesla (that is roughly 5.5K) is observed both in

the magnetic susceptibility of Cu

3

Cl

6

(H

2

O)

2

�2H

8

C

4

SO

2

[16] as well as in the magnetization as a function of ex-

ternal magnetic �eld. This system probably exhibits also

a plateau at one third of the saturation magnetization in

addition to the spin gap.
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FIG. 1. The frustrated trimer chain model. All corners and

intersections carry a spin 1/2 coupled with exchange constants

indicated by the connecting lines.

Motivated by the crystal structure [13], the authors of

[15] have proposed the following model (see also Fig. 1)

[17]:

H = J

1

L=3

X

i=1

fS

3i

� S

3i+1

+ S

3i+1

� S

3i+2

g

+J

2

L=3

X

i=1

S

3i+2

� S

3i+3

+J

3

L=3

X

i=1

fS

3i+1

� S

3i+3

+ S

3i+2

� S

3i+4

g

�h

L

X

i=1

S

z

i

: (1.1)

Since the spin is localized on Cu

2+

ions, the S

i

are spin-

1/2 operators at site i. In (1.1), the reduced �eld h is

related to the physical �eld H by h = g�

B

H in units

where k

B

= 1. The numerical prefactor is determined

by �

B

� 0:67171K/Tesla as well as the value of g which

for the present material is slightly above 2 (the precise

numerical value depends on the direction of the external

magnetic �eld relative to the crystal axes).

For a study of the phase diagram of the Hamiltonian

(1.1), it is useful to observe that the Hamiltonian and

therefore also the phase diagram are invariant under the

exchange of J

1

and J

3

such that one can concentrate e.g.

on jJ

3

j � jJ

1

j. In fact, the h = 0 phase diagram with

antiferromagnetic exchange constants (J

i

� 0) has been

explored in [18] using bosonization and exact diagonaliza-

tion (see also [19]) determining in particular a parameter

region with a spin gap. Very recently, this was comple-

mented by a computation of the magnetization curve at

some values of the parameters using DMRG [20]. The

investigations of [18{20] concentrated on the region with

all coupling constants in (1.1) antiferromagnetic (J

i

� 0)

because [15] suggested that this should be appropriate

for Cu

3

Cl

6

(H

2

O)

2

�2H

8

C

4

SO

2

. However, the parameters
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relevant to the experimental system have not really been

determined so far. We believe that this is an important

issue in particular in view of the fact that according to

the crystallographic data [13], all angles of the Cu{Cl{

Cu bonds lie in the region of 91

�

to 96

�

{ a region where

usually no safe inference on the coupling constants J

i

can

be made, not even about their signs. We will therefore

develop a high-temperature series for the magnetic sus-

ceptibility of the model (1.1) and use it to determine the

coupling constants from the experimental data [15]. It

will turn out that some coupling constants are likely to

be ferromagnetic, i.e. the experimentally relevant cou-

pling constants lie presumably outside the region studied

so far. We then proceed to study more general properties

of the model and to address the question of a spin gap in

the relevant parameter region. We use mainly perturba-

tive arguments supplemented by numerical methods.

Some supplementary results on the trimer model are

contained in the appendices or can be found in [21].

II. MAGNETIC SUSCEPTIBILITY AND

SPECIFIC HEAT

A. High-temperature series for zero �eld

First we discuss some high-temperature series in zero

magnetic �eld. We have used an elementary approach to

perform the computations. Denote the Hamiltonian of a

length L chain with h = 0 by H

0

. Then the fundamental

ingredient for any higher-order expansion is that con-

tributions of tr

�

H

N

0

�

to suitable physical quantities be-

come independent of the system size L if one uses a long

enough chain with periodic boundary conditions. The

concrete Hamiltonian H

0

given by (1.1) must be applied

2L=3 times to wind once around the system and to feel

that it is �nite. On the other hand, contributions from

tr

�

H

N

0

�

with N < 2L=3 are independent of L. We have

used this observation to determine the high-temperature

series by simply computing the traces for the lowest pow-

ers N on a chain with a �xed L and periodic boundary

conditions [22]. Just two small re�nements to this ele-

mentary approach have been made. The �rst one is that

we computed the traces separately for all subspaces of

the z-component of the total spin S

z

tot

. This is already

su�cient to obtain series for the speci�c heat c

v

and the

magnetic susceptibility �. The second one is to make also

the order 2L=3 usable: At this order, only the coe�cient

of J

L=3

1

J

L=3

3

is a�ected by the �niteness of the chain and

this coe�cient can be corrected by hand using results for

a Heisenberg ring of length 2L=3.

For notational convenience, we introduce the partition

function for L sites by

Z

L

= tr

�

e

��H

0

�

(2.1)

with k

B

T = 1=�.

The lowest orders of a reduced magnetic susceptibility � are found to be

�

red:

(�) =

1

�LZ

L

@

2

@h

2
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�

e

��(H

0

�hS

z
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)

�

�

�

�
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=

�

L

tr

�
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z
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)

2

e
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0

�
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L

=

�
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�

�
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4

3
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2

�

+O

�

�

6

�

: (2.2)

Similarly, we obtain the lowest orders of the high-temperature series for the speci�c heat

c

v

(�)

k

B

=

�

2

L

@

2

@�

2

ln (Z

L

)

=

�

2

16

�

2J

2

1

+ J

2

2

+ 2J

2

3

�

+

�

3

32
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3

3
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3

1
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3

2
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3

J

1

J
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�

4
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8J

2

3

J

2

J

1

+ 8J

3

J

2

1

J

2

+ 12J

2

3
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2

3

J
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2

+ 8J
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J

2
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+ 6J
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4
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�

�
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�

: (2.3)

Complete 12th order versions of both series can be accessed via [21].

For a uniform Heisenberg chain (J

1

= J

2

and J

3

= 0), the coe�cients of the series for � and ln (Z

L

) =L (or c

v

)

agree with those given for instance in [23] when they overlap.
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B. Fit to the experimental susceptibility

Now we use our 12th order series for the susceptibility

(2.2) to �t the experimental data [15] and thus extract

values for the coupling constants J

i

. We used the data

for the single crystal (H k b-axis) and the polycrystalline

sample [15] as well as some unpublished new measure-

ments for all three axes of a single crystal [24]. For the

polycrystalline case the average g-factor is known to be

g

av

� 2:1 from ESR while in the single crystal case [15]

we used the g-factor as a �tting parameter. The follow-

ing prefactors are used to match the series (2.2) to the

experimental data:

�

exp:

(T ) =

3N

A

g

2

�

2

B

k

B

�

red:

�

1

T

�

: (2.4)

We performed �ts in various intervals of temperature

with a lower boundary (T

l

) lying between 150K and

250K, while the upper boundary was kept �xed at 300K.

Fits were performed with the raw 12th order series. For

both experimental data sets of [15] we obtained rea-

sonable, though volatile �ts around T

l

= 150K � 250K

yielding the following estimates: J

1

= �250K � 40K,

J

2

= 250K�40K, J

3

= �40K�30K. For the single crys-

tal sample we additionally determined g

b

= 1:95� 0:05.

We have further performed �ts to unpublished single-

crystal data sets where the g-factors are known from

ESR [24]. When a constant is added to (2.2), the data

for all three crystal axes can be �tted consistently with

J

1

� �300K, J

2

� 280K and J

3

� �60K in an interval of

high temperatures (220K

<

�

T � 300K). This set of cou-

pling constants is in agreement with our earlier �ts and

we will use the latter in the further discussion below.

Fig. 2 shows the measured susceptibility for the poly-

crystalline sample [15] together with the series result.

Since the parameters were obtained from a �t which

was performed with a di�erent data set, we have used

g = 2:03 (which di�ers slightly from the experimentally

found g

av

� 2:1) in order to obtain agreement of the raw

series with the experimental data for T � 240K. Clearly,

the raw series should not be trusted down into the region

of the maximum of � where Pad�e approximants should be

used instead. The region below the maximum cannot be

expected to be described with a high-temperature series.

The overall agreement is reasonable though the theoret-

ical result reproduces the experimental one in the vicin-

ity of the maximum only qualitatively. This discrepancy

might be due to the frustration in the model which leads

to cancellations in the coe�cients. Note also that, due to

the frustration, the maximum of � is located at a lower

temperature than would be expected for a non-frustrated

model with coupling constants of the same order of mag-

nitude. Consequently, higher orders are important in the

entire temperature range covered by Fig. 2, precluding in

particular the analysis of the high-temperature tail of �

in terms of a simple Curie-Weiss law.

The agreement for intermediate temperatures can be

improved if the maximum is included in the �tting re-

gion and Pad�e approximants are used in the �t. The

main change with respect to the �ts discussed above is

that J

3

tends to be closer to J

1

. However, it will become

clear from the discussion in later sections that the region

with J

3

close to J

1

is not appropriate to describe the ex-

perimental observations of the low-temperature region.
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FIG. 2. Experimental results for the susceptibility (`+')

in comparison with the �t J

1

= �300K, J

2

= 280K and

J

3

= �60K. We show the raw 12th order series (dotted line)

as well as several Pad�e approximants: [7,6] (full line), [6,6]

(long dashes) and [6,5] (short dashes).

Although we are not able to determine the coupling

constants to high accuracy, all our �ts lead to the con-

clusion that J

2

should be antiferromagnetic and J

1

and

J

3

(or at least one of them) must be ferromagnetic if

one wants to model the susceptibility measured at high

temperatures [15] with the frustrated trimer chain (1.1).

In view of earlier theoretical investigations [18{20], this

conclusion is somewhat surprising. Note that none of

our �ts converged to all J

i

> 0. Additional assumptions

(including a constraint on the J

i

) are necessary to deter-

mine from �(T ) what the optimal values of the J

i

would

be in this antiferromagnetic region and thus allow for a

comparison with Fig. 2. Such a �t and a comparison with

the present one is discussed in appendix A. The upshot

is that the experimentally observed �(T ) [15] cannot be

explained with only antiferromagnetic J

i

.

The �ndings of this section necessitate a detailed re-

analysis of the Hamiltonian (1.1) since earlier works did

not look at the appropriate parameter region.

III. LANCZOS RESULTS

In order to study the zero-temperature behavior of the

frustrated trimer chain we have performed Lanczos di-

agonalizations of small clusters with periodic boundary

conditions. Although computations were performed for

various values of the parameters, we will present explicit

results only for the �nal parameter set determined above.

3



Further results in the region J

i

> 0 are in agreement with

[18{20] and are used in appendix A.

Fig. 3 presents the zero-temperature magnetization

curve for the trimer chain model. Here and below the

magnetization hMi is normalized to saturation values�1.

First, it is reassuring that the system still has antifer-

romagnetic features despite two ferromagnetic coupling

constants (note that we are now probing a region far from

that used for determining the J

i

). Since experiments

found a spin gap [15], an important question clearly is if

we also obtain a gap from the model with these parame-

ters. We have therefore performed a �nite-size analysis of

the gap to S

z

= 1 excitations (corresponding to the �rst

step in the �nite-size magnetization curves of Fig. 3). All

our approaches led to results compatible with a vanish-

ing gap. However, it is di�cult to reliably exclude a gap

of a few K with system sizes L � 30. We will therefore

return to this issue later and assume for the extrapolated

thick line in Fig. 3 a vanishing spin gap. In general, this

extrapolation was obtained by connecting the mid-points

of the steps of the L = 30 magnetization curve, except

for hMi = 1 and hMi = 1=3 where the corners were used.

1/6

1/3

1/2

2/3

5/6

1

0 50 100 150 200

<
M

>

gH [Tesla]
FIG. 3. Magnetization curve for J

1

= �300K, J

2

= 280K

and J

3

= �60K. The thick line is an extrapolation whereas

thin lines are for �nite system sizes: L = 12 (dotted), L = 18

(short dashes), L = 24 (long dashes) and L = 30 (full).

For the parameters of Fig. 3, hMi = 1=3 is reached

with a magnetic �eld H = 20 � 25Tesla. The order of

magnitude agrees with the experimental �nding [15] even

if the value found within the model is a factor of two to

three below the experimental one. Above this �eld, Fig.

3 exhibits a clear hMi = 1=3 plateau which is expected

on general grounds [1{5].

We conclude this section by presenting in Fig. 4 the

lowest three excitations for the S

z

= 1 sector as a func-

tion of momentum k, where k is measured with respect

to the groundstate, i.e. k = k

S

z

=1

� k

GS

. This spectrum

is very similar to that of an S = 1=2 Heisenberg chain of

length L=3 with coupling constant J

e�:

� 16K. In partic-

ular, one can recognize the two-spinon scattering contin-

uum and a few higher excitations. This identi�cation of

the low-energy excitations of the frustrated trimer chain

with an e�ective S = 1=2 Heisenberg chain is one of the

numerical indications for the absence of a spin gap.

0

10

20

30

40
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60

−π −π/2 0 π/2 π

E
 [

K
]

k
FIG. 4. Lowest three excitations in the S

z

= 1 sector for

L = 24 (`+') and L = 30 (`�') with J

1

= �300K, J

2

= 280K

and J

3

= �60K.

IV. THE LINE J

1

= J

3

The Lanczos results of the previous section raise the

question if the trimer chain model has a spin gap in the

region with J

1

, J

3

< 0: In this region, the model behaves

like an antiferromagnet (see e.g. Fig. 3) which is frus-

trated since the number of antiferromagnetic coupling

constants around a triangle is odd. Therefore, a spin gap

appears possible in principle and we proceed with further

arguments to decide whether it appears in the relevant

parameter region.

Evidence for a spin gap in the parameter region J

1

,

J

3

> 0 was actually �rst obtained on the line J

1

= J

3

[10]. The reason is presumably that the line J

1

= J

3

can be treated analytically at least to some extent be-

cause then the total spin is locally conserved on each

bond coupled by J

2

. In fact, one can easily discuss the

entire magnetization process [25] and not just the ques-

tion of a spin gap and we refer the interested reader to

[21] for some comments on this aspect.

Recall that the model (1.1) with h = 0 gives rise

to three types of groundstates in di�erent regions with

J

1

= J

3

> 0 (we will assume J

2

> 0 throughout this sec-

tion) [10]: That of the S = 1=2-S = 1 ferrimagnetic chain

for J

2

< 0:90816J

1

, a spontaneously dimerized state for

0:90816J

1

< J

2

< 2J

1

and, �nally, singlets are formed

on all bonds coupled by J

2

for J

2

> 2J

1

with e�ectively

free spins in between. In the �rst and the third case, one

�nds ferrimagnetic behavior with a spontaneous magne-

tization hMi = 1=3 and only the second region exhibits

the requested gap.

For J

1

= J

3

< 0, we found only two regions:

1. For

J

2

> �J

1

(4.1)
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the groundstate is formed by singlets on the J

2

-

bonds and free S = 1=2 spins in between. This

again gives rise to ferrimagnetic behavior with a

spontaneous magnetization hMi = 1=3.

2. When

J

2

< �J

1

(4.2)

the entire system behaves like a ferromagnet. In

this case the system is spontaneously completely

polarized (hMi = 1).

We conclude that {unlike for J

1

= J

3

> 0{ the

groundstate is always gapless for J

1

= J

3

< 0

which we have argued to be more appropriate for

Cu

3

Cl

6

(H

2

O)

2

�2H

8

C

4

SO

2

.

V. EFFECTIVE HAMILTONIANS FOR THE

GROUNDSTATE

The low-energy behavior of the model Hamiltonian

(1.1) can be analyzed further using degenerate perturba-

tion theory. Truncation at a certain order of the coupling

constants leads to e�ective Hamiltonians which in some

cases turn out to be well-known models.

We will use the abbreviations

~

J

i

=

J

i

J

1

;

�

J

i

=

J

i

J

2

: (5.1)

A. J

1

large and antiferromagnetic

To test the method, we �rst consider the case of anti-

ferromagnetic J

1

. For this purpose we extend the �rst-

order e�ective Hamiltonian of [20] for the case J

1

� J

2

,

J

3

� 0 to second order. For J

1

large and antiferromag-

netic, the groundstate-space of a trimer is given by an

S = 1=2 representation. In this subspace of doublets,

the e�ective Hamiltonian has the form of a J

1

-J

2

chain

when truncated after the second order:

H

e�:

= J

1

X

i

S

i

� S

i+1

+ J

2

X

i

S

i

� S

i+2

: (5.2)

Here, the S

i

are e�ective spin-1/2 operators. The e�ec-

tive exchange constants are

J

1

J

1

=

4

9

�

�

~

J

3

+

~

J

2

�

�

79

405

~

J

2

3

+

8

135

~

J

2

~

J

3

+

211

1620

~

J

2

2

(5.3)

and

J

2

J

1

= �

91

486

~

J

2

3

+

22

243

~

J

2

~

J

3

+

10

243

~

J

2

2

: (5.4)

In this approximation, the ferrimagnetic phase found in

[18] is given by an e�ective ferromagnetic Hamiltonian

(J

1

< 0) while the antiferromagnetic phase corresponds

to J

1

> 0. The transition line can thus be determined

from J

1

= 0 [26]. We �nd

~

J

3

=

12

79

~

J

2

�

90

79

+

1

158

q

17245

~

J

2

2

+ 48240

~

J

2

+ 32400

=

~

J

2

�

1

80

~

J

2

2

+O

�

~

J

3

2

�

; (5.5)

which improves the agreement of the approximation

~

J

3

=

~

J

2

[20] with the numerical results of [18].

The dimer phase with a spin gap is characterized by

J

2

=J

1

> 0:241167(5) (see [27] and references therein).

Using (5.3) and (5.4), it is found to open at

~

J

2

� 3:60,

~

J

3

� 1:361 with a square-root like behavior of

~

J

3

as a

function of

~

J

2

. Since this is not in the weak-coupling re-

gion, it is not surprising that the numbers di�er substan-

tially from those obtained numerically in [18]. However,

the topology of the groundstate phase diagram comes out

correctly from our e�ective Hamiltonian: In particular,

the dimerized spin gap phase is located inside the anti-

ferromagnetic phase and arises because of a su�ciently

large e�ective second neighbor frustration J

2

.

B. J

2

large and antiferromagnetic

The preceding argumentation is not applicable to the

region J

2

> 0, J

1

; J

3

< 0. However, a similar case has

been discussed earlier [1,4] and J

2

� jJ

1

j; jJ

3

j has been

found to be a useful limiting case. We will now analyse

this region in the same manner as above.

For J

2

� jJ

1

j; jJ

3

j, the spins on all J

2

-bonds couple

to singlets and only the intermediate spins contribute to

the low-energy excitations. In the space of these inter-

mediate spins, we can again map the Hamiltonian (1.1)

to the Hamiltonian (5.2) to the lowest orders in J

1

, J

3

.

Up to �fth order, we �nd the e�ective coupling constants

to be given by [28]

J

1

J

2

=

�

�

J

1

�

�

J

3

�

2

(

1

2

+

3

�

�

J

1

+

�

J

3

�

4

+ 3

�

J

1

�

J

3

�

�

�

J

1

+

�

J

3

� �

107

�

�

J

2

1

+

�

J

2

3

�

� 406

�

J

1

�

J

3

�

64

)

(5.6)

and

J

2

J

2

=

�

�

J

1

+

�

J

3

� �

�

J

1

�

�

J

3

�

4

4

: (5.7)

This mapping is now applicable regardless of the sign of

J

1

and J

3

as long as J

2

> 0. First we consider the case

of antiferromagnetic J

1

; J

3

> 0. Then the e�ective cou-

pling constants are essentially always antiferromagnetic,

i.e. J

1

;J

2

> 0 leading to a frustrated chain. If J

1

and

5



J

3

are large enough, J

2

=J

1

can exceed the critical value

of about 0:241 (see above) and a spin gap opens. These

observations are again in qualitative agreement with the

phase diagram of [18]. As for the preceding limit, one

should not expect good quantitative agreement since the

required values of J

1

and J

3

are not small but of the same

order as J

2

.

Now we turn to the more interesting case J

1

; J

3

< 0.

Then the oupling constant (5.7) is always ferromagnetic:

J

2

< 0. If jJ

1

j and jJ

3

j are large enough, J

1

also be-

comes ferromagnetic. This is compatible with the behav-

ior found in section IV on the line J

1

= J

3

< 0. If jJ

1

j and

jJ

3

j are small, J

1

remains antiferromagnetic. Since J

2

is

always ferromagnetic, no frustration arises in the e�ec-

tive model and a spin gap is not expected to open. This

is true to the order which we have considered. Higher

orders might actually yield frustrating contributions. In

any case, frustration is substantially weaker for ferromag-

netic J

1

; J

3

< 0 than for antiferromagnetic J

1

; J

3

> 0. It

is therefore plausible that a spin gap is absent in the fer-

romagnetic region (unless jJ

1

j and/or jJ

3

j are very large

and the present argument is not applicable).

It should be noted that (5.6) and (5.7) turn out to be

small if

�

J

1

�

�

J

3

is small. In fact, one can argue that

the results of this section remain qualitatively correct

for

�

J

1

�

�

J

3

small even if

�

J

1

and

�

J

3

are not separately

small: For J

1

= J

3

, the intermediate spins are e�ec-

tively decoupled due to the presence of the singlets on

the J

2

-bonds (see section IV). A small detuning J

1

6= J

3

generates an e�ective coupling of the intermediate spins

via higher-order processes. However, the e�ective cou-

pling will stay small as long as J

1

� J

3

is small. If one

wants to model Cu

3

Cl

6

(H

2

O)

2

�2H

8

C

4

SO

2

, jJ

1

�J

3

j must

therefore at least be on the same scale as e.g. the �eld

h � 80K required to polarize the intermediate spins lead-

ing to hMi = 1=3 [15]. This observation rules out a J

1

very close to J

3

.

Finally, we also calculated the e�ective Hamiltonian for

a strong ferromagnetic intra-trimer interaction J

1

. The

problem then maps to a frustrated S = 3=2 chain with

four-spin interactions. Even if this is not a well-known

Hamiltonian and the issue of a spin gap thus remains un-

clear in this case, we present it in appendix B in order to

open the way for further investigation of this limit.

VI. MAGNETIZATION PLATEAUX

We complete our theoretical analysis with a discussion

of plateaux in the magnetization curves of the frustrated

trimer chain model.

A plateau with hMi = 1=3 is abundant in the magne-

tization curve (compare Fig. 3) and can be easily under-

stood in the limits jJ

2

j; jJ

3

j � J

1

or jJ

1

j; jJ

3

j � J

2

. This

is readily done by adding the coupling J

3

to the series

of [4]. More details as well as the explicit series for the

boundaries of the hMi = 1=3 plateau are available under

[21]. Here we just mention that the main conclusions of

[4] regarding this plateau remain qualitatively unchanged

in the presence of the additional coupling J

3

.

Regarding plateaux with hMi 6= 1=3, observe �rst that,

when a spin gap opens in the frustrated trimer model,

the groundstate is dimerized, i.e. translational invariance

is spontaneously broken by a period two. Spontaneous

breaking of translational invariance by a period two also

permits the appearance of a plateau with hMi = 2=3 (see

[29] and references therein). We will now investigate this

possibility further.

First we consider the case J

1

> 0 and start in the limit

of strong trimerization (J

2

= 0; J

3

= 0). When one ap-

plies a magnetic �eld h

c

=

3

2

J

1

, the two states j"""i and

1

p

6

(j#""i�2 j"#"i+j""#i) are degenerate in energy. This

degeneracy is then lifted by the couplings J

2

; J

3

. The ef-

fective Hamiltonian to �rst order is an XXZ chain in a

magnetic �eld [30{35,29]. We obtain the following e�ec-

tive couplings for the XXZ chain:

J

xy

=

1

6

J

2

�

2

3

J

3

J

z

=

1

36

(J

2

+ 8J

3

)

h

e�

= h� h

c

�

1

36

(5J

2

+ 22J

3

) (6.1)

and therefore the e�ective anisotropy �

e�

= J

z

=jJ

xy

j is

�

e�

=

J

2

+ 8J

3

j6J

2

� 24J

3

j

: (6.2)

For 5=32 < J

3

=J

2

< 7=16, we have �

e�

> 1 and thus a

gap, i.e. an hMi = 2=3 plateau in the original model. A

plateau with hMi = 2=3 can be indeed observed numer-

ically somewhere in this region (see e.g. [20]). The line

J

3

=J

2

= 1=4 describes the Ising limit �

e�

=1.

In order to address the region of ferromagnetic J

1

,

we now start from the limit J

1

= J

3

= 0 and apply a

magnetic �eld h

c

= J

2

. Then the two states j""i and

1

p

2

(j#"i � j"#i ) on the J

2

-dimer become degenerate in

energy while the intermediate spins are already polar-

ized. This can be again treated by degenerate perturba-

tion theory in 1=J

2

. Up to third order we �nd an XXZ

chain with

J

xy

J

2

=

1

8

�

2 +

�

J

1

+

�

J

3

� �

�

J

1

�

�

J

3

�

2

J

z

J

2

=

1

8

�

�

J

1

+

�

J

3

� �

�

J

1

�

�

J

3

�

2

h

e�

J

2

=

h

J

2

� 1�

1

2

�

�

J

1

+

�

J

3

�

�

1

4

�

�

J

1

�

�

J

3

�

2

(6.3)

that is

�

e�

=

�

J

1

+

�

J

3

j2 +

�

J

1

+

�

J

3

j

: (6.4)

In the region where this treatment is valid, we always

have a small �

e�

, i.e. no plateau at hMi = 2=3. Indeed,
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one can see that the dimer excitations can hop at second

order in 1=J

2

while up to this order all diagonal terms

involve only a single dimer site. Thus, up to second or-

der the diagonal terms contribute only to h

e�

and to this

order one obtains an XY chain in a magnetic �eld. A

small anisotropy is restored at third order before terms

that are not described by a simple XXZ chain arise at

fourth order.

VII. CONCLUSIONS

We have studied the frustrated trimer chain (1.1)

(Fig. 1) using a variety of methods. First, we have com-

puted 12th-order high-temperature series for the suscep-

tibility � and speci�c heat. Fits of the high-temperate

tail of the susceptibility computed from the model to the

one measured on Cu

3

Cl

6

(H

2

O)

2

�2H

8

C

4

SO

2

[15] lead to

J

2

= 250K� 40K and ferromagnetic J

1

= �260K� 50K,

J

3

= �40K� 30K (we showed in appendix A that �(T )

cannot be �tted with the antiferromagnetic parameters

proposed in [18{20]). We assumed that these parame-

ters remain valid down to low temperatures since we are

not aware of any indication of a drastic change in the

magnetic behavior of Cu

3

Cl

6

(H

2

O)

2

�2H

8

C

4

SO

2

as tem-

perature is lowered. In fact, features of other experi-

mental observations at intermediate and low tempera-

tures are roughly reproduced with the aforementioned

parameters: We �nd a maximum in �(T ) in the region

50K � T � 100K and a smooth increase of the low-

temperature magnetization hMi from 0 to 1=3 as the ex-

ternal magnetic �eld is increased from zero to several

ten Tesla. From a quantitative point of view, the agree-

ment may however not yet be entirely satisfactory: Devi-

ations between the measured susceptibility from the one

obtained within the model can be seen in the interval

80K � T � 200K and the model predicts an hMi = 1=3

magnetization for a magnetic �eld that is a factor two to

three below the one actually required in the experiment.

Probably the most exciting experimental observation

[15] for Cu

3

Cl

6

(H

2

O)

2

�2H

8

C

4

SO

2

is the existence of a

spin gap of about 5.5K. We have therefore searched for a

spin gap in the region of ferromagnetic J

1

and J

3

using

several methods. Neither Lanczos diagonalization, dis-

cussion of the line J

1

= J

3

nor an e�ective Hamiltonian

for large J

2

provide any evidence in favor of a spin gap

in this parameter region. A further careful analysis of

this issue would certainly be desireable in particular in

view of the small size of the actually observed gap. At

present, however, it seems likely that the model does not

reproduce a spin gap in the relevant parameter region.

It should be noted that the coupling constants which

we have determined are about two orders of magnitude

larger than the experimentally observed gap. There-

fore, a small modi�cation of the model is su�cient to

produce a gap of this magnitude. The possibilities in-

clude dimerization of the coupling constants, exchange

anisotropy as well as additional couplings. A modi�ca-

tion of the model along these lines may also help to im-

prove the quantitative agreement with the features ob-

served in Cu

3

Cl

6

(H

2

O)

2

�2H

8

C

4

SO

2

at energy scales of

about 100K. Further measurements are however needed

to discriminate between these possibilities. For example,

it would be interesting to measure the speci�c heat and

compare it with our series (2.3). It emerges also from our

analysis that a temperature of 300K is still too small to

allow for application of a simple Curie-Weiss law to the

magnetic susceptibility �. It would therefore be useful

to measure � to higher temperatures in order to permit

analysis via truncation of (2.2) after the order T

�2

which

would provide a more direct check that 2(J

1

+ J

3

) + J

2

is negative.

However, inelastic neutron scattering would presum-

ably be most helpful: First, this should clearly de-

cide if Cu

3

Cl

6

(H

2

O)

2

�2H

8

C

4

SO

2

is really quasi-one-

dimensional and secondly it would yield direct informa-

tion on the excitation spectrum which could hopefully

be interpreted in terms of coupling constants. Such a de-

termination of the coupling constants would also circum-

vent the question whether model parameters change as a

function of temperature since neutron scattering is car-

ried out at low temperatures, i.e. the temperature scale

of interest. We therefore hope that neutron scattering

can indeed be performed and are curious if excitations

will be observed that are similar to those computed in

the trimer chain model (Fig. 4).

The frustrated trimer chain model is also interesting in

its own right: It has a rich phase diagram which among

others includes many aspects of the J

1

-J

2

chain such as

a frustration-induced spin gap in some parameter region

[18{20]. Also plateaux in the magnetization curve exist

in this model: A plateau with hMi = 1=3 is abundant

both in the regions with antiferromagnetic and ferrimag-

netic h = 0 groundstates. Also a plateau with hMi = 2=3

can be shown to exist in the region with J

1

; J

3

> 0 (see

[20] and section VI). Like in the case of the spin gap, the

opening of the latter plateau is accompanied by sponta-

neous breaking of translational invariance in the ground-

state. Amusingly, however, the hMi = 2=3 plateau opens

already for J

2

; J

3

� J

1

{ a region where the spin gap is

absent. In this context of magnetization plateaux, we

hope that the magnetization measurements [15] can be

extended to slightly higher �elds which should unveil the

lower edge of the hMi = 1=3 plateau.
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APPENDIX A: ANTIFERROMAGNETIC

COUPLING CONSTANTS

In this appendix we discuss a �t of the magnetic sus-

ceptibility � with antiferromagnetic coupling constants

J

i

> 0. A number of assumptions are necessary in order

to obtain at all a convergent �t with parameters in the

antiferromagentic spin gap region [18{20].

First we �x the ratio of the magnetic �eld h(hMi =

1=3) to the spin gap h

c

(hMi = 0) approximately to the

experimental value [15]

h(hMi = 1=3)

h

c

(hMi = 0)

= 14:1 : (A1)

To this end, we used numerical data for h(hMi = 1=3)

and h

c

(hMi = 0) on systems of size L = 12, 18 and

24. This data was extrapolated to L = 1 in the same

manner as in [19], i.e. with a polynomial �t h

L

(hMi) =

h

1

(hMi) + a=L+ b=L

2

. For the spin gap, this amounts

to reproducing the computation of [19]. The numerical

solutions to eq. (A1) were then approximated by

~

J

3

= 0:3

�

~

J

2

� 0:85

�

2

+ 0:63 (A2)

where we used the notation (5.1). An analytic formula

was needed in order to implement the constraint (A1)

by inserting (A2) into (2.2) before performing a �t. Eq.

(A2) is valid for 0:6

<

�

~

J

2

<

�

2.

The constraint (A2) is still not su�cient to ensure an-

tiferromagnetic J

i

> 0 with 0:6 �

~

J

2

� 2. To achieve

this goal, we had to make the following further adjust-

ments when �tting our series (2.2) to the experimental

data [15]:

1. Keep g as a �tting parameter,

2. add a constant to (2.2) and use this as another pa-

rameter in the �t,

3. start �tting at low temperatures T

l

� 100K.

Note that both g and the additive constant turn out to be

quite large. For example, for the parameters used in Fig.

5, we found g � 2:9 and an additive constant of about

�0:17 � 10

�3

K

�1

=k

B

. This means that the prefactor in

(2.4) is o� by a factor of about 2 from the value deter-

mined by ESR and that the absolute value of the additive

constant is almost 40% of the susceptibility observed at

T = 300K !

On the basis of these unrealistic parameters, one could

already discard this �t to �(T ). Nevertheless, we com-

pare it to the one shown in Fig. 2: Fig. 5 shows the mea-

sured susceptibility for the polycrystalline sample [15] to-

gether with the series evaluated at J

1

= 120K, J

2

= 141K

and J

3

= 79K. This parameter set is close to parame-

ters proposed in [19]. This proposal was based on two

assumptions: 1) The model should give rise to the ex-

perimentally observed spin gap of around 5K [15]. 2)

The maximum of � is located at T � 0:7J

1

. While we

do indeed reproduce the spin gap rather accurately, the

second assumption is falsi�ed by our computation: The

frustration pushes the maximum of �(T ) again to lower

temperatures as compared to a non-frustrated system.

0

0.25

0.5

0.75

1

0 50 100 150 200 250 300

χ
re

d
. .

 k
B
 .

 1
0

3
 [

K
-1

]
T [K]

FIG. 5. Experimental results for the susceptibility (`+') in

comparison with the �t J

1

= 120K, J

2

= 141K and J

3

= 79K.

We show the raw 12th order series (dotted line) as well as the

[7,6] Pad�e approximant (full line).

Fig. 5 should be compared to Fig. 2. The seemingly

better agreement in the region 100K � T � 200K is due

to including this temperature interval in the �t for Fig.

5, but not in Fig. 2. Note that the jJ

i

j are now smaller

by a factor of about two than those used in Fig. 2. One

would therefore expect better convergence in the vicinity

of the maximum of �(T ), i.e. for 50K � T � 100K. This

expectation is con�rmed by the fact that in Fig. 5, the

[7,6], [6,6] and [6,5] Pad�e approximants are indistinguish-

able. However, while the series reproduces the maximum

roughly in Fig. 2, this is de�nitely not the case in Fig. 5.

The better agreement of the �t in Fig. 2 with the experi-

mental data at T � 70K is particularly remarkable since

this temperature range is far from the �tting region in

this case, while closeby temperatures were used in Fig. 5.

In combination with the unrealistic assumptions needed

to obtain a convergent �t with all J

i

> 0 one can there-

fore conclude safely that only antiferromagnet coupling

constants are not suitable for describing the experimental

data [15] for the susceptibility �(T ).

APPENDIX B: EFFECTIVE HAMILTONIAN FOR

J

1

LARGE AND FERROMAGNETIC

For a strong ferromagnetic intra-trimer interaction J

1

,

the noninteracting groundstates are built from products

of trimer S = 3=2 states. Up to second order we �nd

the following e�ective Hamiltonian in this subspace of

low-lying trimer quartets:
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H

e�:

= J

a

X

i

S

i

� S

i+1

+ J

b

X

i

S

i

� S

i+2

+J

c

X

i

(S

i

� S

i+1

)

2

+

J

d

2

X

i

�

(S

i

� S

i+1

)(S

i+1

� S

i+2

)

+(S

i+2

� S

i+1

)(S

i+1

� S

i

)

	

; (B1)

where the S

i

are now e�ective spin-3/2 operators.

The coupling constants are found to be:

J

a

=

1

9

(J

2

+ 2J

3

) +

197J

2

2

+ 212J

2

J

3

+ 212J

2

3

2592jJ

1

j

;

J

b

=

2J

2

2

+ 5J

2

J

3

+ 2J

2

3

27jJ

1

j

;

J

c

=

41J

2

2

+ 100J

2

J

3

+ 36J

2

3

1296jJ

1

j

;

J

d

= �

4(2J

2

2

+ 5J

2

J

3

+ 2J

2

3

)

243jJ

1

j

: (B2)

Even if this e�ective Hamiltonian is not a well-known one,

it is clear that there is no spin gap in �rst order, since

then the system is e�ectively a nearest neighbor S = 3=2

Heisenberg chain which is either gapless (J

2

+ 2J

3

> 0)

or ferromagnetic (J

2

+ 2J

3

< 0).

If one neglects the J

c

and J

d

terms, one obtains a frus-

trated S = 3=2 chain which has been investigated with

DMRG and leads to a gap for J

b

=J

a

>

�

0:3 [36]. It seems

to be possible to obtain antiferromagnetic J

a

and J

b

in

this region if J

2

and J

3

are chosen suitably and large

(a region including the coupling constants determined in

section II B). However, then one is not in the pertur-

bative region anymore and the J

c

and J

d

terms may

also become important. Further discussion is therefore

needed for reliable conclusions about a gap on the basis

of the Hamiltonian (B1) with coupling constants (B2).
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