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Multi-step approach to microscopic models for frustrated quantum magnets
– the case of the natural mineral azurite
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The natural mineral azurite Cu3(CO3)2(OH)2 is a frustrated magnet displaying unusual and con-
troversially discussed magnetic behavior. Motivated by the lack of a unified description for this
system, we perform a theoretical study based on density functional theory as well as state-of-the-art
numerical many-body calculations. We propose an effective generalized spin-1/2 diamond chain
model which provides a consistent description of experiments: low-temperature magnetization, in-
elastic neutron scattering, nuclear magnetic resonance measurements, magnetic susceptibility as well
as new specific heat measurements. With this study we demonstrate that the balanced combina-
tion of first principles with powerful many-body methods successfully describes the behavior of this
frustrated material.

PACS numbers: 75.50.Ee, 71.15.Mb, 75.30.Et, 75.10.Jm

The natural mineral azurite Cu3(CO3)2(OH)2 has
been used as a blue pigment since the time of the ancient
Egyptians; the beautiful intense blue color (see Fig. 1 (a))
is due to the crystal field splitting of Cu 3d orbitals in
square planar coordination. More recently, the discov-
ery of a plateau at 1/3 of the saturation value in the
low-temperature magnetization curve [1, 2] has triggered
intensive interest in the magnetic properties of azurite.
From the point of view of magnetism, the most impor-
tant structural motives [3] are diamond-like chains which
are formed by the spin-1/2 copper atoms (Fig. 1 (b)).
If all exchange constants were antiferromagnetic, azurite
would fall into the class of geometrically frustrated mag-
nets. These systems are fascinating since the competi-
tion of the magnetic interactions suppresses classically
ordered states and may give rise to new states of matter
with exotic excitations (see Ref. [4] for a recent review).
In particular, for a certain class of frustrated magnets
including diamond chains, one expects localized (disper-
sionless) many-body states at high magnetic fields [5];
indeed inelastic neutron scattering (INS) on azurite ex-
hibits an almost dispersionless branch of excitations [6].

There have been a number of attempts [1, 6–10] to de-
rive a microscopic model for the complex magnetic prop-
erties of azurite. The results are, however, contradictory
and up to now none of these models was able to yield
a fully consistent picture of the experimentally observed
behavior. Some authors favor a diamond chain model
with all exchanges antiferromagnetic [1, 9, 11] while other

authors proposed one of the dominant exchange con-
stants to be ferromagnetic [6–8]. Even more, Ref. [10]
has argued that interchain coupling is important in azu-
rite. The latter may be in agreement with the observation
of a magnetic ordering transition at about 2 K [1, 12–14],
but raises the question why no dispersion perpendicular
to the chain direction is observed by INS [6].

In the present work, we combine first principles density
functional theory (DFT) calculations with model compu-
tations based on different variants of the density-matrix
renormalization group (DMRG) method [15–17] (see also
Section S2) and resolve the underlying model for azurite.
We find that an effective generalized spin-1/2 diamond
chain model with a dominant next-nearest-neighbor an-
tiferromagnetic Cu dimer coupling J2, two antiferro-
magnetic nearest- and third-nearest-neighbor Cu dimer-
monomer exchanges J1 and J3, and a significant direct
Cu monomer-monomer exchange Jm (see Figs. 1 (b) and
3 (a)) explains a broad range of experiments on azu-
rite [1, 2, 6, 18] and resolves the existing controversies.

Since the experimentally determined positions of the
lighter atoms in a structure usually carry larger error bars
than those of more heavy elements, we first performed a
Car-Parrinello molecular dynamics calculation [19, 20] in
order to optimize the positions of the C, O, and H atoms
in azurite. With the optimized structure with a total of
30 atoms in the unit cell we determined the electronic
properties of azurite [21]. The band structure shows six
narrow Cu 3dx2−y2 bands at the Fermi level – correspond-
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FIG. 1. (a) Example of an azurite crystal aggregate. (b)-(d) Arrangement of Cu2+ ions in the structure of azurite. The two
inequivalent Cu2+ ions form dimers (cyan) and monomers (blue). (b) Most important exchange paths within the diamond chain
running along the b-axis: Dimer coupling J2 (black), dimer-monomer couplings J1 and J3 (magenta and green), and monomer-
monomer coupling Jm (orange). (c)-(d) Three-dimensional couplings between diamond chains, connecting (c) monomer and
dimer ions: J5 (yellow) and J6 (red) and (d) dimer ions only: J4 (pink) and J7 (light green).
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FIG. 2. Electronic structure of azurite, calculated with
FPLAPW. (a) Band structure in a wide energy window. At
the Fermi level the bands are dominantly of Cu 3dx2−y2 char-
acter (blue bands). (b) Blow-up of the six bands at the Fermi
level. (c) Electron density above E = −0.75 eV for an iso-
value of 0.1 e/a.u.3. All density is centered at the Cu sites
and it has 3dx2−y2 symmetry.

ing to the six Cu atoms per unit cell – separated by an
energy of 0.9 eV from the occupied Cu 3dz2 bands and
by a gap of Eg ' 3 eV from the higher unoccupied bands
(Fig. 2 (a) and (b)). Fig. 2 (c) shows a charge density
isosurface where a dx2−y2 symmetry of the Cu d orbitals
is evident without contribution of dz2 character, contrary
to previous suggestions [22, 23].

While the GGA calculation describes this system as
metallic, the insulating behavior is correctly given within
the GGA+U approach (see below). Here we first analyze
the interaction paths based on the GGA bandstructure.
We performN -th order muffin tin orbital (NMTO) down-
folding [24, 25] to obtain the tight-binding Hamiltonian
parameters ti describing the six Cu 3dx2−y2 bands (see
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FIG. 3. (a) Generalized diamond chain model. (b) Compar-
ison of computations for the magnetization curve for T = 0
and N = 300 spins with experimental data at T = 80 mK
for H ⊥ b [2]. (c) Experimental and theoretical zero-field
magnetic susceptibility. (d) Experimental (upper panel) and
theoretical (lower panel) specific heat results for various H
fields. Arrows indicate the response to increasing magnetic
field. (e) Theoretical transverse dynamic structure factor on
the 1/3 plateau (H ≈ 14 T) and peak positions of INS spec-
tra from Ref. [6] (white symbols). Color-coding represents the
intensity in arbitrary units.

Fig. 2 (b)). Under the assumption that the exchange cou-
plings are antiferromagnetic, we can estimate the mag-
nitude of the exchange couplings via second-order per-
turbation theory: JAFM

i = 4t2i /U where U is the Cu 3d
onsite Coulomb interaction strength. From this analysis
we identify six further relevant couplings in addition to
J1, J2 and J3: the monomer-monomer exchange Jm also
considered by Rule et al. [6] and the nearest-neighbor
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J1 J2 J3 J4 J5 J6 J7 Jm Jd

1 full model 13.5 42.8 12.5 2.7 0.6 4.4 –1.7 2.6 –0.4

2 minimal model 17.9 43.9 12.0 – – – – 2.4 –

3 refined model 15.51 33 6.93 – – – – 4.62 –

4 Ref. [1] model 19 24 8.6 – – – – – –

TABLE I. Exchange constants in Kelvin (K) derived from
FPLO GGA+U calculations with U = 8 eV and JH = 1 eV
for the various model steps considered in the present work
(see text for explanation). The error margin for each Ji in
the third line is estimated to be of the order 1 to 2 K.

Cu dimer interaction Jd along the chain. In addition,
J4 and J7 provide couplings between Cu dimer atoms in
neighboring chains, whereas J5 and J6 correspond to Cu
monomer-dimer interchain-interactions. The interaction
paths between chains are visualized in Fig. 1 (c) and (d).

Next, we obtain the correct sign (ferro- or antiferro-
magnetic) and magnitude of the Ji from total energy cal-
culations for different Cu spin configurations in supercells
with up to 60 atoms. We employ the full potential local
orbital (FPLO) method [26] with the GGA+U functional
for U = 4, 6, and 8 eV. We map the energy differences
of the frozen collinear spin configurations onto a spin-1/2
Heisenberg model and evaluate the exchange constants J
in a dimer approximation [27]. The nine relevant Cu-Cu
interaction paths obtained from the downfolding calcu-
lations have been probed with 10 different antiferromag-
netic spin configurations together with the ferromagnetic
configuration. The result for a choice of U = 8 eV and
JH = 1 eV is shown in the first line of Table I. As
expected from experimental observations, J2 dominates
and exhibits a 1/U dependence (see Section S1). The two
couplings J1 and J3 are very similar in magnitude, sug-
gesting an almost symmetric diamond chain. We observe
that except for J1, J2, and J3, the coupling strengths are
of the order of a few Kelvin. Comparing our set of pa-
rameters in Table I, line 1 to that obtained in Ref. [10],
the main differences are that we determined the addi-
tional 3D couplings J4, J5, and J7, and our value for Jm,
double-checked with two full potential methods [21, 26],
is clearly nonzero.

At first sight, the fact that interchain coupling turns
out to be appreciable is surprising because INS did not
observe any dispersion perpendicular to the chain direc-
tion [6]. However, since the dimer exchange J2 dom-
inates, one can use perturbative arguments along the
lines of Ref. [28] to show that there are no low-energy
excitations dispersing perpendicular to the chains. The
essential ingredients of the argument are that (i) the in-
terchain exchange constants J4 to J7 are small compared
to J2 and (ii) they connect only to dimers of the neigh-
boring chains (compare Figs. 1 (c) and (d)), i.e., they
contribute only in second or third order in perturbation
theory (see Section S4); this would suggest using an ef-

fective one-dimensional model with the values of J1, J2,
J3, and Jm adjusted to incorporate the effect of the three-
dimensional couplings. Table I line 2 shows the results
obtained by solving the 10 spin configurations only for
the diamond chain couplings. This corresponds to an
averaging over the 3D couplings and translates into a
significant asymmetry of the diamond chain J1 > J3.
The effective one-dimensional model has the additional
advantage that it is amenable to detailed quantum me-
chanical model calculations, thus allowing a quantitative
comparison with experimental data for azurite.

From these results salient experimental features of azu-
rite can already be understood at a qualitative level: two
thirds of the Cu2+ spins are strongly bound by J2 into
dimer singlets while another third consists of monomer
spins which interact weakly by Jm and additional ef-
fective monomer-monomer interactions which are gener-
ated by integrating out the dimers. In an applied mag-
netic field, the monomer spins are therefore polarized
first while the dimer spins remain in the singlet state,
giving rise to the 1/3 plateau [1, 2, 18]. Furthermore,
the two energy scales, i.e., the low-energy scale given by
the monomer-monomer interactions and the high-energy
scale associated to the dimers give rise to the double-peak
structures observed in the magnetic susceptibility [1] and
the specific heat [1, 6]. Finally, we expect a band of low-
energy monomer excitations dispersing along the chain
direction and a band of dimer excitations at higher en-
ergies whose dispersion is additionally suppressed by the
competition of J1 and J3, as indeed observed by INS [6].

We will now show that we can also describe these ex-
perimental results quantitatively. The DFT results leave
some freedom concerning the overall energy scale, how-
ever the ratios of the Ji are expected to be subject only
to small errors [29]. We therefore first slightly refined
the parameter ratios using the magnetization and INS
experiments, leading to J1/J2 = 0.47, J3/J2 = 0.21, and
Jm/J2 = 0.14. The global energy scale is finally adjusted
to the magnetization curve (see below) and we obtain the
exchange coupling constants Ji in Table I, line 3.

In order to fully account for the quantum nature of the
spins residing on the Cu2+ ions, we use a spin 1/2 Heisen-

berg model H =
∑
〈i,j〉 Ji,j

~Si · ~Sj − g µB H
∑

i S
z
i , where

~Si are spin 1/2 operators, Ji,j is the exchange constant
connecting sites i and j (see Fig. 3 (a)), H an external
magnetic field and µB the Bohr magneton. The gyro-
magnetic ratio g is set to 2.06 [30].

Fig. 3 (b) shows a comparison for the experimental
and computed magnetization curves. The overall energy
scale is J2 = 33 K, leading to our final parameter set
in Table I, line 3. The agreement of the theoretical
magnetization curve in Fig. 3 (b) with the experimen-
tal result for H ⊥ b [2] is excellent. Note that the ex-
perimental curve for H ⊥ b exhibits a nice plateau as
expected for a Heisenberg model whereas for H ‖ b the
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plateau is washed out [1], indicative of non-commuting
fields. Therefore we compare our results for the isotropic
Heisenberg model with experiments for H ⊥ b. We find
that dimer spins should be about 2.7% polarized each
(see Section S6), i.e., dimers are essentially in the sin-
glet state whereas the single “monomer” spins are almost
fully polarized in the 1/3 plateau. This is qualitatively
consistent with recent 63,65Cu NMR [18].

At this stage, the values of all Ji are fixed and we have
a parameter-free prediction of the magnetic susceptibility
χ. Fig. 3 (c) compares our computations [16] with our
measurement of the magnetic susceptibility of azurite for
H ⊥ b, which is very similar to the original experiment
of Ref. [1]. Our parameter set (Table I, line 3) leads to
a small, but qualitative improvement compared to the
original one of [1] (see Table I, line 4): we reproduce
a double-peak-like structure at the correct temperatures
whereas only a single peak [7] is obtained with the pa-
rameters of [1].

Analogous to the magnetic susceptibility, we also have
a parameter-free prediction for the magnetic specific
heat. At zero field, two anomalies have been observed
in the specific heat at T = 18 K [1] and T = 4 K [1, 6].
Fig. 3 (d) compares the field-dependence of the experi-
mental specific heat with results calculated [16] for the
parameters of Table I, line 3. The sharp peak in the
experimental curves slightly below 2 K [1, 12] signals
an ordering transition which is out of reach of a one-
dimensional model. Nevertheless, not only are the nu-
merical values of the specific heat for 2 K < T <∼ 10 K
comparable between theory and experiment, but also
important features are reproduced correctly: (i) a low-
temperature peak appears for H = 0 at T ≈ 3 to 4 K.
Note that this low-temperature peak at H = 0 is ab-
sent [8] for the original parameter set of Ref. [1] (compare
the dashed curve in the lower panel of Fig. 3 (d)). (ii)
The low-temperature peak is gradually suppressed by an
applied field, as emphasized by down arrows in the figure.
(iii) In the temperature range 7 K ≤ T ≤ 10 K, the spe-
cific heat increases not only with temperature but also
with increasing magnetic field (marked by up arrows).

Fig. 3 (e) shows our numerical result [17] (see also Sec-
tion S2) for the transverse dynamic structure factor on
the 1/3 plateau as a function of momentum transfer k
along the chain direction and energy E. The peak val-
ues of the dynamic structure factor trace two dispersion
curves nicely. Comparison with the corresponding INS
results [6] (white symbols in Fig. 3 (e)) shows that the
computed ratio of the bandwidths is extremely close to
the experimental value of about 1/6 [31]. Also the to-
tal intensities in the peaks compare favorably with the
experimental results [6].

To summarize, we have shown that the combination
of first principles DFT with state-of-the-art many-body
calculations successfully provides a microscopic model
for the frustrated magnet azurite, which explains a wide

range of experiments [1, 2, 6, 18]. We believe that at-
tempts to fit such a range of experiments, using at least
four exchange constants Ji, are bound to fail. Hence, the
guiding DFT computations were essential. There are sev-
eral issues for further experimental and theoretical study
(see Section S8). In particular, the implications of the
full three-dimensional model which we have derived re-
main to be explored.

We would like to thank H. Kikuchi and S. Süllow
for providing us with the experimental data shown in
Fig. 3 (b) and (e), respectively. Useful discussions with
C. Berthier, M. Horvatić, and S. Süllow are gratefully
acknowledged. This work has been supported by the
DFG (SFB/TR 49, SFB 602, HO 2325/4-2, PR 298/10,
and RI 615/16-1), by the Helmholtz Association through
HA216/EMMI, the National Natural Science Foundation
of China (NSFC), and the JSPS together with the Hum-
boldt Foundation for R.P.

SUPPLEMENTARY MATERIAL

S1. Density functional calculations

Structure relaxations were performed with the
Car-Parrinello projector augmented wave (CP-PAW)
method [20]. We employed a plane wave cutoff of 30 Ryd
for the plane wave part and of 120 Ryd for the density,
respectively, and we used the following sets of (s,p,d)
projector functions per angular momentum: Cu(2,2,2),
O(2,2,1), C(2,2,1) and H(2,0,0). We employed a (4×4×4)
k mesh and the P 21/c symmetry was preserved dur-
ing the relaxation with the help of 60 constraints. The
relaxation with the generalized gradient approximation
(GGA) functional [32] resulted in small bond length
changes of up to 4% and in angle changes up to 2◦ com-
pared to the experimental data from Ref. [3].

The relative strengths of the exchange pathways in
azurite have been obtained by using the electronic
structure technique of muffin-tin orbital (MTO) based
NMTO-downfolding [24, 33].

DFT calculations were performed with the full po-
tential local orbital method [26] (FPLO), version 8.50,
and the full potential augmented plane wave (FLAPW)
method as implemented in the WIEN2k [21] code, which
has been used to crosscheck the FPLO results for selected
supercells. Total energies for different spin configura-
tions were obtained in the GGA+U formalism, employing
both the atomic limit (AL) as well as the around mean
field (AMF) double counting correction. The AL double
counting correction turned out to be the better choice for
the calculation of a realistic set of model parameters for
azurite because the ratios Ji/J2 are strongly dependent
on U in the case of the AMF double counting correction
and can even adopt unphysical values (J1, J3 > J2).

Table SI shows the complete set of exchange coupling
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U [eV] J1 J2 J3 J4 J5 J6 J7 Jm Jd

4 34.1 145.4 35.4 5.9 2.9 16.2 –1.7 5.9 –1.7

6 21.3 82.8 21.2 3.8 1.5 8.6 –1.8 3.9 –0.8

8 13.5 42.8 12.5 2.7 0.6 4.4 –1.7 2.6 –0.4

TABLE SI. Exchange constants in K derived from FPLO
GGA+U calculations with the atomic limit double count-
ing correction. Slater parameters are chosen as F0 = U ,
F2 = 8.6 eV and F4 = 5.4 eV, i.e., JH = (F2 +F4)/14 = 1 eV.

parameters Ji, obtained with the FPLO code (version
8.50) employing the GGA+U functional with atomic
limit double counting correction. The calculations were
repeated for three choices of the Coulomb correlation
strength, U = 4 eV, 6 eV and 8 eV. The Hund’s rule
coupling JH was chosen as JH = 1 eV. The dominant
coupling exhibits a proportionality to 1/U . Note that
the relative importance of the monomer-monomer cou-
pling increases as U is increased.

J2 is antiferromagnetic and the dominant interaction.
One can therefore apply perturbative considerations in
Ji/J2 and argue that interchain excitations can be ne-
glected to a first approximation (see Section S4). The es-
sential items are that the interchain exchange constants
J4 to J7 are small compared to J2 and that they con-
nect only to dimers of the neighboring chains (compare
Figs. 1 (c) and (d)).

This suggests to reduce the set of interaction param-
eters to a minimal model including J1, J2, J3, and Jm
only. In order to determine the effective values of these
exchange constants quantitatively, we performed a least-
square fit for the energy differences including only J1,
J2, J3, and Jm in the model and set all other parameters
to zero. It should be noted that the exchange constants
obtained in this way are effective parameters, which con-
tain the effect of the remaining parameters not included
in the model as statistical average. Furthermore, it is also
important that the procedure of statistical averaging is
done over a sufficiently large manifold, since otherwise
the effective parameters are to some degree arbitrary.
The results are shown in Table SII. It can be seen that
in the minimal model the effective parameters J1 and J3
show a strong asymmetry, which is not present in the full
set of interaction parameters shown in Table SI. This is
mainly due to integrating out of the fairly large coupling
parameter J6 in the model, which couples Cu monomer
with Cu dimer atoms and in this way provides an effec-
tive asymmetry of J1 and J3 (inclusion of J6 in addition
to the minimal model again results in nearly identical J1
and J3 values).

U [eV] J1 J2 J3 Jm

4 50.5 151.1 35.7 3.4

6 30.0 85.4 21.0 3.0

8 17.9 43.9 12.0 2.4

TABLE SII. Effective exchange constants in K for a minimal
model including only J1, J2, J3, and Jm obtained via statis-
tical averaging (see text).

S2. DMRG calculations

The theoretical magnetization curve in Fig. 3 (b) has
been obtained with the static density-matrix renormal-
ization group (DMRG) method [15, 34] using m = 300
states per block and four sweeps in each magnetiza-
tion sector. The theory curves in Figs. 3 (c), 3 (d),
and S1 have been obtained using transfer-matrix DMRG
(TMRG [16, 35]) for the infinite system and m = 300.
Note that these are in agreement with previous TMRG
computations [7, 8] for the parameters of Ref. [1].

The transverse dynamic structure factor of Fig. 3 (e)
has been computed by dynamic DMRG [17] for the pa-
rameters of Table I, line 3, using open chains withN = 60
sites, up to m = 200 states per block and two sweeps per
energy point. Note that for a meaningful comparison of
scattering intensities with experiment, we had to take the
precise positions of the copper atoms in azurite into ac-
count and use the same momentum perpendicular to the
chain direction as in the experiment [6].

S3. Experiment

The specific heat of a plate-like azurite single crystal
with the total mass of 0.36 mg was measured, employ-
ing an ac-calorimetry according to Ref. [36]. The data
were taken in the temperature range 1.6 K ≤ T ≤ 30 K
and in magnetic fields up to 8 T. The experiments were
performed using a home-built AC-calorimeter especially
designed for small plate-like samples. The sample holder,
consisting of a resistive thermometer (Cernox CX-1080-
BG) and a heater, is attached to a 4He-bath cryostat
equipped with a superconducting magnet.

The magnetic susceptibility of azurite was measured
in the temperature range between 2 K ≤ T ≤ 300 K
and in magnetic fields up to H = 4 T using a Quantum
Design SQUID magnetometer. The orientation of the
single crystal (mass 55.26 mg) with respect to the exter-
nal field was H ⊥ b-axis. The data were corrected for the
temperature-independent diamagnetic core contribution,
according to Ref. [37] and the magnetic contribution of
the sample holder. The latter was determined from an
independent measurement.
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S4. Perturbative treatment of interchain coupling

For a large and antiferromagnetic J2, one can use per-
turbative arguments to integrate out the copper dimers
and generate effective interactions between the monomer
copper atoms. In the limit of infinite J2, the two spins on
the corresponding dimer bond are in their singlet state
1√
2

(| ↑↓〉 − | ↓↑〉). In this limit, the only interaction be-

tween the monomer spins is Jm. However, one can use
degenerate perturbation theory in Ji/J2 to generate fur-
ther interactions between the monomer spins.

The second-order contribution to the monomer-
monomer interactions within a chain is known [28] to
be given by

J̃m =
(J1 − J3)2

2 J2
. (1)

This effective interaction enhances the bare interaction
Jm between the monomers along the chain provided that
J1 6= J3.

The interactions J4 and J7 connect dimers of neighbor-
ing chains (see Fig. 1 (d)). Accordingly, they contribute
to interchain monomer-monomer exchange only in third
order in perturbation theory and generate exchanges
∝ J2

1 J4/J
2
2 , J1 J3 J4/J

2
2 , J2

1 J7/J
2
2 and J1 J3 J7/J

2
2 . Us-

ing the values of the Ji in Table I, line 1, these effective
interchain exchanges are estimated to be at most on the
order of 0.3 K ≈ Jm/10 and thus can be neglected safely.

By contrast, J5 and J6 contribute in second order per-
turbation theory to interchain coupling since they con-
nect dimers with monomers of the neighboring chains
(see Fig. 1 (c)). The contribution from J5 is given by
(J1 + J3) J5/(2 J2). Inserting the numbers from Ta-
ble I, line 1, this again turns out to be on the order
of 0.2 K ≈ Jm/10, i.e., also J5 is sufficiently small to be
neglected safely.

The exchange constant J6 also contributes terms pro-
portional to J1 J6/J2 and J3 J6/J2 to interchain effec-
tive monomer-monomer coupling. Inserting again the
values of J1, J2, J3, and J6 in Table I, line 1 into the
second-order expression, we now obtain a contribution
on the order of 1.4 K ≈ Jm/2 to the effective interchain
monomer-monomer coupling. On the one hand, this is
still sufficiently small not to give rise to relevant dis-
persion of the excitations perpendicular to the chains,
in agreement with inelastic neutron scattering on azu-
rite [6]. On the other hand, this value is too large to
neglect J6 completely.

In fact, in a mean-field picture, the monomer moments
influence the effective monomer-monomer exchange along
the neighboring chains. The reason is that the interchain
couplings connect the monomer spins only to one of the
dimer spins on the neighboring chains, thus breaking the
symmetry of the exchange process along the chains and
giving rise to corrections to (1). In this mean-field pic-
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FIG. S1. TMRG and ED results for the zero-field specific
heat per spin. The ED computations were performed for N =
18 spins. We show results both for our new parameter set,
Table I, line 3, as well as for Kikuchi’s original parameter
set Table I, line 4 J1 = 19 K, J2 = 24 K, J3 = 8.6 K, and
Jm = 0 [1].

ture, the interchain coupling J6 has the same effect as
the intrachain coupling J1.

These arguments suggest that one may go from the
full three-dimensional model to an effective chain model
by neglecting J4, J5, and J7, and adding J6 to J1. The
difference between lines 1 and 2 of Table I or Tables SI
and SII can indeed be understood at least qualitatively
in this way although the reduction has been performed
in a completely different manner.

S5. Specific heat

Experimentally, two anomalies have been observed in
the magnetic specific heat at T ≈ 18 K [1] and T ≈
4 K [1, 6] (compare also top panel of Fig. 3 (d)). Fig. S1
shows TMRG results for the specific heat per spin C in
zero magnetic field. For our new parameter set, Table I,
line 3 (black line in Fig. S1), we find a maximum of C at
a temperature slightly above 10 K and a low-temperature
feature at T ≈ 3 K. Although this does not reproduce the
experimental temperatures exactly, it is in better agree-
ment with the experimental findings than the results for
the original parameter set of Ref. [1] (red line in Fig. S1).

Fig. S1 includes exact diagonalization (ED) results for
rings with N = 18 spins. We observe that finite-size
effects have no visible effect for T >∼ 6 K.
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N monomer 〈Sz
i 〉 dimer 〈Sz

i 〉
18 0.47342867 0.01328567

24 0.47343148 0.01328426

30 0.47343154 0.01328423

36 0.47343154 0.01328423

TABLE SIII. Structure of the M = 1/3 plateau state for rings
with N sites and the parameters in line 3 of Table I.
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FIG. S2. Excitation spectrum at H = 14 T as computed
by exact diagonalization with the parameters in Table I, line
3. Solid black (red) lines connect the lowest excitations with
spin quantum numbers smaller (larger) by one than that of
the 1/3 plateau state. Dashed lines indicate the location of
the experimental result [6] for the corresponding excitations.

S6. Structure of the 1/3 plateau

The 1/3 plateau state of azurite has been characterized
using NMR [18], which amounts to a measurement of the
expectation values 〈Sz

i 〉. This NMR study showed that
the dimer spins are essentially in their singlet state with
just 10% spin polarization on the dimers. Correspond-
ingly, the monomer spins are almost polarized on the 1/3
plateau.

Using ED for rings with N = 18, 24, 30, and 36 sites
and our parameters line 3 of Table I, we find the struc-
ture of theM = 1/3 plateau state presented in Table SIII.
We observe that the numerical results for the expectation
values converge rapidly with system size and read off that
the dimer spins are about 2.7% polarized each. This is
only slightly smaller than the 10% observed in Ref. [18].
We note that the NMR experiment [18] involved a ro-
tation around the crystallographic a-axis and speculate
that this gives rise to non-commuting fields which en-
hance the dimer polarization as compared to the ideal
Heisenberg model.
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FIG. S3. Same as Fig. S2, but for Kikuchi’s original parame-
ter set Table I, line 4, J1 = 19 K, J2 = 24 K, J3 = 8.6 K, and
Jm = 0 [1].
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FIG. S4. Same as Fig. S2, but for the parameter set of Gu
and Su [7, 8]: J1 = 23 K, J2 = 43.7 K, J3 = −9.3 K, and
Jm = 0.
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FIG. S5. Same as Fig. S2, but for a first parameter set pro-
posed in Ref. [6]: J1 = 1 K, J2 = 55 K, J3 = −20 K, and
Jm = 0.
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FIG. S6. Same as Fig. S2, but for the second parameter set
proposed in Ref. [6]: J1 = 1 K, J2 = 55 K, J3 = −20 K, and
Jm = 6.5 K.

S7. Excitation spectrum on the 1/3 plateau

The excitation spectrum above the 1/3 plateau of
azurite has been probed by inelastic neutron scatter-
ing at H = 14 T [6]. These experiments observed two
cosine-like bands of magnetic excitations with a mini-
mum energy at the antiferromagnetic wave vector k = π.
The two bands are sketched by the dashed lines in
Figs. S2–S6. They are centered around ≈ 1.3 meV and
≈ 2.35 meV and have a width of 20.2 K and 3.6 K, re-
spectively. In particular the ratio of the bandwidths of
the upper and lower bands is 1.8/10.1 ≈ 1/5.6.

Figs. S2–S6 show the excitation spectrum as a func-
tion of momentum k along the chain direction on the
1/3 plateau computed by exact diagonalization with pe-
riodic boundary conditions. Black, blue, and red symbols
correspond to excitations with ∆Sz = −1, 0, and 1, re-
spectively. The blue symbol at k = 0 and energy E = 0
corresponds to the ground state of the 1/3 plateau. A
Fourier analysis of the lowest ∆Sz = ±1 excitations for
N = 30 sites yields the solid lines in Figs. S2–S6. One
observes that the lowest ∆Sz = ±1 excitations collapse
onto these lines for all sizes N , demonstrating that the
main effect of a finite system size N on these excitations
is a discretization of the allowed values of the momentum
k (see also [9]).

First let us look at our final parameter set Table I, line
3. The lowest black and red excitation in Fig. S2, i.e., the
two solid curves correspond to the two dispersion curves
already observed in Fig. 3 (e). Note that energy and mo-
mentum resolution in Fig. 3 (e) is essentially limited by
the open ends of the finite-size chains which were used for
the dynamic DMRG computations. Evidently, inspec-
tion of the momentum-resolved bare energy levels shown
in Fig. S2 yields better energy-momentum resolution at
the expense of losing information about the neutron in-
tensities of the excitations. Indeed, in Fig. S2 we see a
large number of excitations at energies above 2 meV and

only the dynamic structure factor of Fig. 3 (e) shows that
they have very little contribution to the inelastic neutron
cross section. From the bare energy levels of Fig. S2, we
read off a bandwidth ratio of 1/5.3 which is very close to
the experimental value [6].

Fig. S3 shows the expected excitation spectrum for
Kikuchi’s original parameter set Table I, line 4 [1]. Note
that we have computed only the 20 lowest excitations in
some sectors for N ≥ 24 and that the density of states is
already quite large at energies above 1 meV in the present
case. Hence, some levels may be missing in Fig. S3 at
energies E > 2 meV for Sz ≤ N/6 and N ≥ 24. We nev-
ertheless keep this region in order to be able to show the
location of the excitations observed by inelastic neutron
scattering on azurite [6] (dashed lines). In the present
case it is not so easy to distinguish two cosine-like bands
in the numerical results. If one uses the lowest black and
red energy level, respectively, one finds a bandwidth ratio
close to 1/1.9, quite far off the experimental result [6].

Further proposals of parameters sets [6–8] contain a
ferromagnetic J3. Ref. [10] already pointed out that a
ferromagnetic J3 is hard to reconcile with the crystal
structure of azurite given the dx2−y2 character of the rel-
evant copper orbitals. We will nevertheless look at the
excitation spectra for these parameter sets and demon-
strate that they are either inconsistent or at least yield
less good agreement with the neutron scattering experi-
ments [6] than our final parameter set given in Table I,
line 3.

The parameter set of Gu and Su [7, 8] J1 = 23 K, J2 =
43.7 K, Jxy

3 = −6.9 K, Jz
3 = −11.73 K, Jm = 0 has an

artificially large magnetic anisotropy in the supposedly
ferromagnetic J3. Replacing this by an average value
J3 = −9.3 K, we find the excitation spectrum shown in
Fig. S4. Not only is the bandwidth ratio of approximately
1/1.8 again far away from the experimental result [6], but
in this case the upper excitation branch is about 1 meV
(≈ 10 K) too high in energy.

Finally, Ref. [6] tried to invert perturbative results
for the effective monomer-monomer and dimer-dimer ex-
changes along the chain in order to propose J1 = 1 K,
J2 = 55 K and a ferromagnetic J3 = −20 K. We discuss
two variants of these parameters, starting in Fig. S5 with
Jm = 0. In this case, we find a bandwidth ratio 1/1.4
which is clearly inconsistent with the experimental result.
However, it was already proposed in Ref. [6] to improve
this behavior by adding a Jm = 6.5 K. The result with
such a Jm included is shown in Fig. S6. While inclusion of
Jm = 6.5 K improves the agreement with experiment [6],
the result is not quite as good for our final parameter set
Table I, line 3. In particular, the bandwidth ratio is just
1/4.

To summarize the discussion of this subsection, we
have demonstrated that our final parameter set Table I,
line 3 yields the best agreement with inelastic neutron
scattering on the 1/3 plateau [6] among the proposals
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of Refs. [1, 6–8]. In particular, inelastic neutron scat-
tering is inconsistent with the parameters proposed in
Refs. [1, 7, 8].

S8. Perspectives

There are some further refinements of the model
for azurite to be implemented in future investigations.
Firstly, we have argued interchain coupling to be unim-
portant for a basic description of azurite, but, although
small, it is present and likely to be responsible for the
following features: (i) The strong curvature at the lower
edge of 1/3 plateau in the theoretical magnetization curve
of Fig. 3 (b) versus the smoother behavior observed in
the experiment for H ⊥ b is characteristic for one- ver-
sus higher-dimensional physics [38–40]. (ii) An ordering
transition at temperatures slightly below 2 K [1, 12–14] is
evident in Fig. 3 (d), i.e., interchain coupling affects ther-
modynamic properties at temperatures of a few Kelvin.
In view of the success of the effective one-dimensional
model Table I, line 3, we are confident that our predic-
tion of Table I, line 1 for the exchange ratios of the full
three-dimensional model is also reliable. Indeed, it would
be very interesting to compare the predictions of this
three-dimensional model for the zero-field ordered state
with the corresponding recent experimental observations
[14]. However, this will require very different methods
from the present work and thus is an interesting topic
for future investigations.

Secondly, we have neglected magnetic anisotropy in the
theoretical model although experiments [1] show that it
is present in azurite and affects magnetic properties for
a magnetic field parallel to the crystallographic b-axis at
an energy scale of a few Kelvin.

Finally, we would like to emphasize that we find all
Ji antiferromagnetic with similar values of J1 and J3,
thus placing azurite in a highly frustrated parameter
regime. This is reflected by the almost localized nature
of the dimer excitations. These excitations will become
low-energy excitations in magnetic fields around 32 T,
and one expects related unusual thermodynamic behav-
ior like an enhanced magnetocaloric effect [5, 41]. This
calls for additional thermodynamic measurements close
to the saturation field of azurite.
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