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Abstract. The natural mineral azurite Cu3(CO3)2(OH)2 is an interesting spin-1/2

quantum antiferromagnet. Recently, a generalised diamond chain model has been

established as a good description of the magnetic properties of azurite with parameters

placing it in a highly frustrated parameter regime. Here we explore further properties of

this model for azurite. First, we determine the inelastic neutron scattering spectrum

in the absence of a magnetic field and find good agreement with experiments, thus

lending further support to the model. Furthermore, we present numerical data for

the magnetocaloric effect and predict that strong cooling should be observed during

adiabatic (de)magnetisation of azurite in magnetic fields slightly above 30T. Finally,

the presence of a dominant dimer interaction in azurite suggests the use of effective

Hamiltonians for an effective low-energy description and we propose that such an

approach may be useful to fully account for the three-dimensional coupling geometry.
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Figure 1. Generalised diamond chain model. A unit cell x (indicated by the grey

shaded region) contains two dimer sites ‘d1, x’, ‘d2, x’ and one monomer site ‘m, x’.

These sites are connected by the exchange constants J1, J2, J3 and Jm which are

indicated by different line styles.

1. Introduction

On the one hand, highly frustrated magnets constitute a fascinating field of research

since the competition of different interactions give rise to many exotic phenomena (see

for example [1]). On the other hand, theoretical studies of highly frustrated quantum

magnets are usually a notoriously difficult task, for example because the so-called ‘sign

problem’ precludes efficient Quantum Monte Carlo simulations of such models [2]. A

notable exception to this general rule are models which allow for the construction of

exact ground states because of destructive quantum interference caused exactly by the

frustrating interactions. A famous example is the exact dimer ground state of the two-

dimensional Shastry-Sutherland model for SrCu2(BO3)2 (see [3] for a review).

Another case of such exact eigenstates are the ground states which can be

constructed exactly in terms of localised magnons in the high-field regime of certain

highly frustrated quantum magnets [4–22]. Remarkably, these localised ground states

give rise to a macroscopic degeneracy, i.e. a finite zero-temperature entropy exactly at

the saturation field [6–9,12,13,15,16,18,19,21]. This implies an enhanced magnetocaloric

effect and promises applications for efficient low-temperature cooling [7, 15, 17, 23–26].

Models with local conservation laws [9,15,19,27–45] can be considered as a special

mechanism to ensure the presence of localised magnons. One particular model in this

category is the ideal diamond chain whose ground-state phase diagram was studied

in [46]. This model is sketched in figure 1; the ideal diamond chain is obtained by

setting J1 = J3 and Jm = 0. In the case J1 = J3, the total spin ~Sd1,x + ~Sd2,x of a

vertical dimer is a conserved quantity in each unit cell x. Several modifications of the

ideal diamond chain have also been considered in the recent literature, see, e.g. [47–52].

In particular, the ‘distorted’ variant of the spin-1/2 diamond chain with J1 6= J3 and

Jm = 0 has attracted much attention from the theoretical side [53–58]. Among the

theoretical results we would like to mention in particular that a plateau at one third of

the saturation magnetisation is abundant in the spin-1/2 distorted diamond chain, as

can be expected for a model with a unit cell of three sites [59–61]. Evidently, it is very

desirable to have an experimental realisation of a spin-1/2 distorted diamond chain,
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preferably in the highly frustrated regime J1 ≈ J3.

The natural mineral azurite Cu3(CO3)2(OH)2 was originally suggested to realise a

spin-1/2 distorted diamond chain with all exchange constants antiferromagnetic [62–64],

i.e. J1, J2, J3 > 0 and Jm = 0 in figure 1. This picture had, however, been questioned:

Some authors have suggested a ferromagnetic J3 < 0 [65–67] which would render

the model non-frustrated whereas other authors have argued interchain coupling to

be important [68]. Recent first-principles density-functional computations [69] indeed

yield a three-dimensional coupling geometry with a dominant antiferromagnetic dimer

exchange constant J2 > 0. Nevertheless, closer inspection of the exchange geometry

allows one to map this three-dimensional network effectively to the generalised diamond

chain sketched in figure 1 [69]. A small refinement of the exchange constants obtained

from the first-principles density-functional computations led to [69]

J1 = 15.51K , J2 = 33K , J3 = 6.93K , Jm = 4.62K . (1)

Using different variants of the density-matrix renormalisation group (DMRG) method

[70, 71], it was demonstrated [69] that the generalised diamond chain with the values

(1) of the exchange constants is consistent with a broad range of experiments, namely

the magnetisation curve [62, 72], the magnetic susceptibility [62, 69], the specific heat

[62, 67, 69], the structure of the the one-third plateau as determined by NMR [73] and

last but not least inelastic neutron scattering on this one-third plateau [67].

It should be noted that the parameter set (1) is not very far from the original

proposal [62]. In particular, the fact that the two exchange constants J1 and J3 are of

a comparable magnitude places azurite in a highly frustrated parameter regime. The

main difference between the original parameter set [62] and (1) is the direct exchange

coupling Jm between monomer spins whose presence was already suggested in [67].

In order to be precise, we present the Hamiltonian for the generalised diamond

chain sketched in figure 1:

H =

N/3
∑

x=1

{

J1
~Sm,x ·

(

~Sd2,x + ~Sd1,x+1

)

+ J2
~Sd1,x · ~Sd2,x

+J3
~Sm,x ·

(

~Sd1,x + ~Sd2,x+1

)

+ Jm
~Sm,x · ~Sm,x+1

}

− g µB H

N/3
∑

x=1

(

Sz
d1,x + Sz

d2,x + Sz
m,x

)

. (2)

The total number of spins is denoted by N and x runs over the N/3 unit cells. The
~S·,x are spin-1/2 operators, H the external magnetic field and µB the Bohr magneton.

In order to express the magnetic field in experimental units, we need the value of the

gyromagnetic ratio g. Here we follow [69] and use g = 2.06 which is consistent with

high-field ESR on azurite [74].

This paper is organised as follows. In section 2 we discuss two effective Hamiltonians

which are obtained [56] by applying strong-coupling perturbation theory to the

model (2). The two effective Hamiltonians describe the low-energy (low-temperature)
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behaviour in the regime of magnetisation up to one-third and between one-third and

full magnetisation, respectively. In section 3 we then compute the zero-field excitation

spectrum by exact diagonalisation and a dynamical variant of the DMRG method [75].

We observe good agreement with the inelastic neutron scattering results [67], thus

lending further support to the description of azurite in terms of the generalised diamond

chain model (2) with the parameters (1). Next, we explore magnetocaloric properties

of the model in section 4 using computations based on a transfer-matrix variant of the

DMRG method [76, 77]. The zero-temperature entropy which is present in the ideal

diamond chain exactly at the saturation field [15,19] is lifted by the distortion J1 6= J3.

Nevertheless, we predict that cooling down to temperatures substantially below 1K

should be possible in the high-field regime. Finally, in section 5 we summarise our

findings and suggest topics for further theoretical and experimental studies of azurite.

2. Low-energy effective Hamiltonians

A simple picture of azurite is given by an effective spin-1/2 Heisenberg chain accounting

for the low-energy excitations at small magnetic fields and weakly coupled dimers which

describe higher energies or higher magnetic fields [62, 64, 67–69]. The corresponding

effective Hamiltonians can easily be obtained from the results of [56, 69]. We will

nevertheless discuss them here since they will be useful for the later analysis.

2.1. Small magnetic fields

At small magnetic fields and for large J2 the dimers are frozen in their singlet ground

state. Accordingly, the low-energy degrees of freedom are given by the monomer spins

in this low-field regime. For the generalised diamond chain model, the monomer spin

degrees give rise to an effective spin-1/2 chain. This description holds up to the one-

third plateau where all spins of the effective spin-1/2 chain are aligned along the field

direction. Because of the SU(2) symmetry present atH = 0, this effective spin-1/2 chain

can contain only SU(2)-symmetric terms. Considering the limit J2 ≫ |Ji| (i = 1, 3) [56]

and H = 0 one arrives at a nearest-neighbour Heisenberg chain

Hm
eff. = Jeff.

∑

x

~Sm,x · ~Sm,x+1 . (3)

The effective exchange constant Jeff. is given up to second order in |Ji| ≪ J2 (i = 1, 3)

by [56]

Jeff. = Jm +
(J1 − J3)

2

2 J2

+O

({

J3
i

J2
2

})

. (4)

Insertion of the values (1) for the exchange constants yields Jeff. ≈ 5.8K.

A more accurate estimate for Jeff. can be obtained from an analysis of the spectrum

on the one-third plateau where one finds two sharp excitation branches: the lower one

can be attributed to the effective spin-1/2 chain and the upper one to the dimers. The

numerical results [69] for these two branches at N = 30 are reproduced in figure 2.
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Figure 2. Excitations of the generalised diamond chain with N = 30 sites on the

one-third plateau obtained by exact diagonalisation with J1 = 15.51K, J2 = 33K,

J3 = 6.93K, Jm = 4.62K and H = 14T. Squares show results for Sz = 4 which is just

below the plateau and circles show results for Sz = 6 which is just above the plateau

value Sz = N/6 = 5. Lines show interpolations which have been obtained by a Fourier

analysis.

Lines in this figures have been obtained from a Fourier analysis of the finite-size data.

From the first Fourier component of the lower branch one finds the effective exchange

constant

Jeff. = 6.595K (5)

for the parameter set (1). Higher harmonics contribute less than 4% of the first

harmonic to the dispersion of this lower branch, consistent with only nearest-neighbour

interactions appearing in the effective Hamiltonian (3).

A consistency check on this picture is obtained by the lower edge of the one-third

plateau which is located atHc1 = 13.32K according to numerical data for the generalised

diamond chain model with the parameters (1) [69]. The transition at Hc1 corresponds

to the transition to saturation of the effective spin chain (3). This predicts the equality

Hc1 = 2 Jeff. which indeed holds to high accuracy with (5).

2.2. High magnetic fields

A similar effective description holds at high magnetic fields. If J2 is dominant and

H ≈ J2, the monomer spins are fully polarised whereas the singlet state |s〉 =
1√
2
(| ↑↓〉 − | ↓↑〉) and the spin-polarised component of the triplet |t〉 = | ↑↑〉 are (almost)

degenerate. The collective behaviour of these dimer degrees of freedom can be efficiently
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encoded by pseudo-spin-1/2 operators acting at site x

T z
x |s〉x = −

1

2
|s〉x , T z

x |t〉x =
1

2
|t〉x ,

T+
x |s〉x = |t〉x , T+

x |t〉x = 0 ,

T−
x |t〉x = |s〉x , T−

x |s〉x = 0 . (6)

The dimer degrees of freedom give rise to another effective spin chain. However, this

effective spin chain is anisotropic since the presence of an external magnetic field reduces

the symmetry to U(1). In addition, corrections to the magnetic field H also need to

be taken into account. Hence, the effective Hamiltonian for the N/3 dimer degrees of

freedom is

Hd
eff. =

N/3
∑

x=1

{

Jz T
z
x T

z
x+1 +

Jxy

2

(

T+
x T−

x+1 + T−
x T+

x+1

)

}

− (H − Jdimer)
∑

x

T z
x . (7)

The effective exchange constants can again be determined by second-order perturbation

theory in |Ji| ≪ J2 (i = 1, 3) [56]:

Jxy =
(J1 − J3)

2

4 J2

+O

({

J3
i

J2
2

})

,

Jz = O

({

J3
i

J2
2

})

,

Jdimer = J2 +
J1 + J3

2
+

(J1 − J3)
2

4 J2

+O

({

J3
i

J2
2

})

. (8)

In passing we note that from (4) and (8) one finds Jxy/Jeff. = 1/2 for Jm = 0 and

up to second order in J1 and J3. This ratio translates directly into the ratios of the

bandwidths of the two excitation branches on the one-third plateau. However, in azurite

this bandwidth ratio is measured to be about 1/6 [67]. This indicates that the excitation

spectrum of azurite on the one-third plateau [67] cannot be fitted by a simple distorted

diamond chain with Jm = 0 [69], at least not in the region of large J2.

Insertion of (1) into (8) yields Jxy = 0.56K, Jz = 0 and Jdimer = 44.8K. More precise

values for the effective parameters can again be derived by an analysis of numerical

data [69] for the parameters (1). The first Fourier coefficient of the upper branch in

figure 2 yields

Jxy = 1.249K . (9)

Higher Fourier components contribute less than 7% of the first component, in agreement

with only nearest-neighbour interactions appearing in (7).

The other parameters can for instance be determined from the upper edge Hc2 of the

one-third plateau and the transition to saturation at Hsat.. Using Hc2 = Jdimer−Jxy−Jz,

Hsat. = Jdimer+Jxy+Jz, as appropriate for (7), the numerical values [69] Hc2 = 43.045K,

Hsat. = 46.674K and (9) we find

Jz = 0.565K , Jdimer = 44.860K . (10)
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Figure 3. Zero-field spectrum of the generalised diamond chain model for azurite with

the exchange constants (1). The left panel shows excitation energies E in the spin-1

sector obtained by exact diagonalisation for rings with N = 18, 24, 30 and 36 spins

as a function of momentum k − k0 where k0 is the momentum of the ground state.

The right panel shows dynamical DMRG results for the dynamic structure factor of

a system with open boundary conditions and N = 60 sites as a function of energy E

and momentum transfer k. In the latter panel, the shading corresponds to the neutron

scattering intensity in arbitrary units.

In both panels lines at low energies denote the boundaries of the two-spinon continuum

of an effective spin-1/2 Heisenberg chain with an effective exchange constant Jeff.

≈

6.6K ≈ 0.57meV. The lines at an energy slightly below 4meV show the dimer excitation

(upper branch) of figure 2 shifted up in energy by H = 14T ≈ 1.67meV.

Two remarks are in order at this point. Firstly, we note that Jdimer differs substantially

from the bare dimer coupling constant J2 which can be traced to substantial first-order

corrections in (8). This precludes a direct derivation of J2 from most experimental data

on azurite if accurate results are desired. Secondly, we observe that the numerical value

Jz/Jxy ≈ 0.45 lies in the easy-plane regime of the effective Hamiltonian (7).

A consistency check of the above analysis can be obtained from the average position

of the upper branch in figure 2 which yields Jdimer − Jz = 44.371K. This agrees with

(10) to better than 0.1K.
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3. Excitation spectrum in zero field

The excitation spectrum on the one-third plateau found by inelastic neutron scattering

on azurite [67] has been compared in [69] to computations for the generalised diamond

chain model with the parameters (1) and very good agreement was found. Here we

will perform a similar comparison with the experimental excitation spectrum in zero

field [67].

First, we look at the spectrum itself which we have computed by exact

diagonalisation for periodic chains. In this case momentum k is a good quantum

number. In addition, we use conservation of total Sz as well as spin-inversion for Sz = 0.

By virtue of the Wigner-Eckart theorem, inelastic neutron scattering on the ground

state of an SU(2)-symmetric antiferromagnet is sensitive only to excitations with total

spin 1 [78]. Therefore we reconstruct the total spin quantum numbers from the Sz-

and spin-inversion-resolved results. For N = 18 spins it is possible to perform a full

diagonalisation. For N = 24 sites we have used the method described in section 2.1 of

[79] to compute a large number of low-lying energies. Finally, for N = 30 and 36 we have

used Spinpack (see http://www-e.uni-magdeburg.de/jschulen/spin/index.html).

The left panel of figure 3 shows the results of these computations for the spin-1 sector.

For N = 18 and 24 we have sufficiently many states to cover the shown energy

range completely. However, for N = 30 and 36 it is impossible to compute so many

states accurately. Therefore, for N = 30 and 36 we had to restrict to lower energies

E . 2.8meV and 2.4meV, respectively. Accordingly, one should keep in mind that

eigenvalues are missing in the left panel of figure 3 at higher energies for the two biggest

system sizes.

One can discern some structure in the spectrum of the left panel of figure 3 at

low energies which we will discuss below. However, at energies E & 1.5meV, there

is a large density of spin-one excitations without any evident structure. In order to

understand which excitations can be observed by neutrons, we therefore need to compute

the dynamic structure factor

Sxx(~k, ω) =
3

N

∑

〈x,y〉
ei

~k·(~Rx−~Ry) Im〈0|Sx
x

1

ω + E0 −H + i η
Sx
y |0〉 . (11)

We have computed this dynamic structure factor via the correction-vector method in the

density-matrix renormalisation group (DMRG) following [75]. First, we have calculated

the spectral function between each pair of sites in the chain

Gx,y(ω) = 〈0|Sx
x

1

ω + E0 −H + i η
Sx
y |0〉 (12)

using 2 sweeps for each frequency point ω, N = 60 lattice sites and m = 200 kept states.

For technical reason one has to introduce a Lorentzian broadening η > 0 of the spectral

function. We choose η = 0.05 J2.

In a second step, one needs to Fourier transform Gx,y in order to obtain the dynamic

structure factor (11). The diamond chain contains dimers which are coupled strongly

by J2. The structure factor of a dimer is known to depend strongly on the momentum
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transfer and to lead to vanishing intensity at zero momentum transfer along the dimer

direction [80]. It is therefore important to use the precise positions ~Rx of the spin-1/2

copper atoms in azurite [81] as well as the experimental value of the momentum transfer

transverse to the chains [67] when evaluating (11) fromGx,y. The result of this procedure

is shown in the right panel of figure 3. The main limiting factor of the resolution in this

panel is a finite resolution of the momentum transfer k along the chain direction which

is caused by the open ends of the chain.

The calculated structure factor shown in the right panel of figure 3 shares the

following features with the results obtained by inelastic neutron scattering on azurite

[67]: (i) There is a scattering continuum at energies E . 2meV with a sharp lower edge.

(ii) At higher energies, one finds a broad band of excitations with a sharp feature in its

middle. Just the energy of this feature differs between the model where it is located at

E ≈ 3.2meV and the experiment [67] which finds it at E ≈ 6meV.

For a more quantitative analysis of the low-energy features we can use the effective

spin-chain Hamiltonian introduced in section 2.1. It is well known that the low-

energy excitations of a spin-1/2 Heisenberg chain form a two-spinon continuum whose

boundaries are given by [78, 82, 83]

ǫl =
π

2
Jeff. |sin k| , ǫu = π Jeff. sin

k

2
. (13)

The boundaries of the two-spinon continuum with the value of Jeff. given by (5) are shown

by the lines in figure 3 and one observes that the low-energy excitations fall indeed into

this region. One can also directly compare the lowest excitations in the left panel of

figure 3 with those of a spin-1/2 chain with N/3 sites [78, 82] and one observes again

good agreement. Furthermore, even the low-energy part of the dynamic structure factor

shown in the right panel of figure 3 matches nicely with that of a spin-1/2 Heisenberg

chain [84, 85]. Hence we conclude that an effective spin-1/2 Heisenberg chain with Jeff.

given by (5) describes the low-energy properties of the generalised diamond chain well.

The location of the dimer branch can be estimated by adding the Zeeman energy

H = 14T ≈ 1.67meV to the upper branch in figure 2. This yields the curves in figure 3

slightly below 4meV. The shape of this curve traces the dispersion of the broad maximum

between 3 and 3.5meV in the right panel of figure 3 nicely, but it is about 0.5meV too

high in energy. Indeed, by applying a simple Zeeman shift to the upper branch of figure

2, we are stretching the high-field effective Hamiltonian (7) well beyond its limits of

validity. After all, there are many low-energy excitations at H = 0 which are not taken

into account by this Hamiltonian. Renormalisation of the bare dimer excitation by

many-body effects is therefore expected. This is reflected both by the broad diffusive

background and a down-shift of the maximum scattering intensity by about 0.5meV

in the generalised diamond chain model with respect to the effective Hamiltonian (7)

(see right panel of figure 3). It should be noted that the experiments [67] on azurite

observe a renormalisation of the bare dimer excitation to higher energies rather than

lower energies as in our model. This is likely to be a signature of the three-dimensional

ordered state in which the experiments were performed. Accordingly we speculate that
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quantitative agreement could be improved by taking the three-dimensional coupling

geometry [69] fully into account.

In any case, analysis of the low-energy excitation spectrum of azurite [67] supports

the conclusion [69] that the generalised diamond chain model with the parameters (1)

yields a good overall description of the experimental situation.

4. Magnetocaloric effect in high magnetic fields

One of the interesting features of azurite is its proximity to a class of systems with

localised magnons at high magnetic fields giving rise to an enhanced magnetocaloric

effect [19].

4.1. Ideal diamond chain

Let us first take a look at an ideal diamond chain model with parameters which are

similar to those for azurite. Note that for J1 = J3 one can use conservation of the

total spin on each vertical dimer ~Sd1,x + ~Sd2,x to speed up the computation [19]. Figure

4 shows the result for N = 24 spins and J1 = J3, J2 = 3 J1. The large value of J2

ensures that all low-energy states are simple product states. Hence, finite-size effects

are negligible in figure 4.

In a magnetic field the monomer spins are immediately polarised and thus frozen.

Exactly at the saturation field Hsat., the dimer singlet and one component of the dimer

triplet become degenerate, giving rise to a two-fold degeneracy per dimer, i.e. a residual

entropy S/N = (ln 2)/3 [15, 19]. On the other hand, for low magnetic fields the dimers

are frozen in their singlet state. Exactly at H = 0, the two projections of the monomer

spins become degenerate and we find again a residual entropy S/N = (ln 2)/3. This

particular value of the entropy is traced by the white lines in figure 4. Consider now

an adiabatic process which is defined by a constant entropy and thus follows the lines

in figure 4. If such an adiabatic process is started below the white lines in figure 4, i.e.

with an entropy S/N < (ln 2)/3, one achieves cooling to T → 0 for H → Hsat. (or for

H → 0).

4.2. Generalised diamond chain model for azurite

Now we turn to the generalised diamond chain model for azurite and check how

J1 6= J3 lifts the degeneracy. For this purpose we have computed the entropy using

a transfer-matrix variant of the density-matrix renormalisation group, also known as

‘TMRG’ [76, 77]. Note that this method works for the infinite system and proceeds at

a fixed magnetic field H from high to low temperatures by successively adding Trotter-

Suzuki slices. There is just one refinement which had to be implemented to get accurate

results at low temperatures and high magnetic fields. In this region, the (asymmetric)

reduced density matrix only has a small number of large eigenvalues while all other

eigenvalues are tiny. Therefore, we use an additional reorthogonalisation procedure
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Figure 4. Entropy per spin S/N of the ideal diamond chain model with J1 = J3 =

11K, J2 = 33K and Jm = 0, as a function of magnetic field H and temperature T . The

top panel covers the region from zero field to a fully polarised system. In this panel the

black lines correspond to S/N = 0.05, 0.1, 0.15, . . . (in increasing order). The bottom

panel focuses on the low-temperature behaviour at the transition to full polarisation.

Here the black lines correspond to S/N = 0.025, 0.05, 0.075, . . . The white lines in

both panels denote the residual entropy S/N = (ln 2)/3.

The data in this figure has been obtained by exact diagonalisation for N = 24 spins.

after the left and right eigenvectors of the reduced density matrix are obtained by exact

diagonalisation. This allows us to keep more states and thus improve accuracy. We have

tested this procedure against exact results for the entropy of the spin-1/2 Heisenberg

chain [86] and found excellent agreement.

Figure 5 shows the result for the entropy of the generalised diamond chain with the

parameters (1). In this case none of the constant entropy curves with S/N > 0 goes to

T = 0, reflecting the lifting of the degeneracy present in the ideal diamond chain. In

other words: in the present case the entropy per site S/N goes to zero as T → 0 for all

values of the magnetic field H . The value of the residual entropy of the ideal diamond
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Figure 5. Entropy per spin S/N of the generalised diamond chain model for azurite,

i.e. J1 = 15.51K, J2 = 33K, J3 = 6.93K and Jm = 4.62K, as a function of magnetic

field H and temperature T . The top panel covers the region from zero field to a fully

polarised system. In this panel the black lines correspond to S/N = 0.05, 0.1, 0.15,

. . . (in increasing order). The bottom panel focuses on the low-temperature behaviour

at the transition to full polarisation. Here the black lines correspond to S/N = 0.025,

0.05, 0.075, . . . The white lines in both panels denote the residual entropy of the ideal

diamond chain, S/N = (ln 2)/3.

The data in this figure is for the thermodynamic limit and has been obtained by TMRG

with m = 300 kept states.

chain S/N = (ln 2)/3 is again shown by white lines in figure 5. One can read off that

this residual entropy is pushed up to T > 2.8K.

The degeneracy at H = 0 is particularly fragile. It is lifted not only by a distortion

J1 6= J3, but also by a finite direct coupling of the monomer spins Jm > 0. This is

reflected by a window of Hc1 ≈ 9.6T for the polarisation of the monomer spins [69] and

the fact that the value S/N = (ln 2)/3 is pushed up to T ≈ 5.8K for H = 0 (compare

the upper panel of figure 5).

On the other hand, the degeneracy at the saturation field would survive a finite
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Figure 6. Constant-entropy curves of the full generalised diamond chain model (full

lines) in comparison to those of the effective Hamiltonian (7) (dashed lines). Lines

correspond to S/N = 0.025, 0.05, 0.075, . . . (in increasing order). Results for the

generalised diamond chain model correspond to the black constant entropy curves in

the lower panel of figure 5. The entropy of the effective Hamiltonian (7) has been

computed by exact diagonalisation with the parameters (9), (10) and N/3 = 20 dimer

sites. This system size is large enough to ensure the absence of visible finite-size effects

in the figure.

monomer-monomer coupling Jm > 0 and is lifted only by the distortion J1 6= J3.

Accordingly the region in which the dimers are polarised is spread over a smaller field

window of about ∆H = 2.6T width between Hc2 = 31.1T and Hsat. = 33.7T [69]

and the value S/N = (ln 2)/3 is attained already for T ≈ 2.8K (see the lower panel

of figure 5). Although the entropy S/N = (ln 2)/3 is spread over a temperature

window of approximately 2.8K, an adiabatic process can still cool to substantially lower

temperatures in this high-field region. For example, an adiabatic process which starts

at (H, T ) ≈ (27T, 1.6K) or (38T, 1.65K) would go down to T < 70mK as H → 31.1T or

33.8T, respectively. This case corresponds to an entropy S/N = 0.025, i.e. the lowest

curve in the bottom panel of 5. For the larger value S/N = 0.05 (second curve in the

lower panel of figure 5) an adiabatic process would still cool to a minimum temperature

T ≈ 90mK.

Finally, we compare the entropy in the high-field region shown in the lower panel of

figure 5 with the entropy of the effective Hamiltonian (7). The latter can be considered

as an effective description of the splitting of the manifold of the 2N/3 states which are

degenerate in the ideal diamond chain exactly at Hsat..

In principle, the entropy could be computed exactly for the model (7) [86]. However,

we found it simpler to perform a full diagonalisation of this model with the parameters

(9), (10) and N/3 = 20 dimer sites. This system size is large enough to ensure the
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absence of visible finite-size effects in the dashed constant-entropy curves in figure 6.

The constant entropy curves of the full model which are shown by black lines

in the lower panel of figure 5 are reproduced in figure 6 by full lines. The dashed

lines show results for the effective Hamiltonian (7) with the same values of the entropy

S/N . One finds that the effective model reproduces the results of the full one well for

temperatures T . 1.5K and in the high-field regime shown in figure 6. The deviations

observed at higher temperatures in figure 6 indicate that other states become relevant

in this temperature range. Note that the uppermost curve in figure 6 corresponds to

S/N = 0.225 which is very close to the total entropy S/N = (ln 2)/3 of the effective

chain model. Still, a simplified description in terms of the effective Hamiltonian (7)

works well in high magnetic fields and at sufficiently low temperatures.

5. Summary and discussion

In this work we have explored further properties of the generalised diamond chain

model for azurite [69]. First, we have computed the excitation spectrum in the absence

of a magnetic field and found a two-spinon continuum at low energies as well as a

dimer branch sitting on a broad background at higher energies. These features are in

good agreement with inelastic neutron scattering results on azurite [67], thus further

supporting the description of azurite in terms of a generalised diamond chain model [69].

We have then computed magnetocaloric properties at high magnetic fields. The

degeneracy present in the ideal model at the saturation field [15, 19] is lifted in the

generalised diamond chain model for azurite. Still, we predict cooling capabilities down

to temperatures substantially below 1K as the magnetic field approaches the upper

edge of the one-third plateau Hc2 or the saturation field Hsat. from below or above,

respectively.

There are at least two features in azurite which are not accounted for by the

generalised diamond chain model. Firstly, a magnetic anisotropy is clearly present

in azurite [62]. This is most likely due to Dzyaloshinsky-Moriya interactions. Indeed,

there is at least one investigation of the effect of such terms [87], however not for the

parameters which we consider to be most appropriate for azurite. On the other hand,

the complication of magnetic anisotropies can be experimentally avoided by aligning the

external magnetic field with the high-symmetry axis.

Secondly, azurite orders for temperatures below 2K in low magnetic fields [62, 88–

91]. This ordering process reflects the presence of interchain coupling terms [68, 69]

and could account in particular for the fact that we predict the dimer branch at zero

magnetic field at energies which are a few meV below the experimental result [67]‡.

Also in high magnetic fields azurite is found to be ordered at T = 600mK [93]. Such an

ordering transition will push most of the low-temperature entropy up to the transition

temperature such that most of the adiabatic (de)magnetisation curves are pushed to

‡ Interchain coupling and magnetic anisotropies can also give rise to additional finer structures in the

spectra which are visible in high-resolution inelastic neutron scattering experiments [92].
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temperatures higher than 600mK. Nevertheless, the ordering temperature is expected to

vanish as one approaches the one-third plateau and the fully polarised state at H = Hc2

and Hsat., respectively. Thus, we expect the strong cooling effect at Hc2 and Hsat.

to be preserved in azurite as these two fields are approached from below and above,

respectively.

A more accurate treatment of the interchain coupling geometry [69] is clearly

necessary for a quantitative description of the ordered states of azurite at temperatures

below 2K. In this context, it may be interesting to note that we can obtain very accurate

results using effective Hamiltonians, provided that their parameters are determined

carefully. On the one hand, we have shown that the effective Heisenberg chain (3)

yields a very good description of the low-energy excitations at H = 0 (see figure 3).

On the other hand, figure 6 demonstrates that the low-temperature behaviour of the

generalised diamond chain in high magnetic fields is well described by the effective

Hamiltonian (7). The high frustration of the underlying model is reflected by the small

values of the effective exchange constants Jxy and Jz which are one to two orders of

magnitude smaller than the bare exchange constants.

In particular, the experimental observation of simple antiferromagnetic order in

azurite at high magnetic fields [93] can be rationalised by noting that the parameters (9)

and (10) lead to an effective easy-plane anisotropy. Under such conditions an instability

towards antiferromagnetic order in the transverse components is expected. However,

for a quantitative description of the low-energy properties of azurite in the high-field

region, interchain coupling definitely needs to be included in an effective Hamiltonian,

in particular in view of the fact that the effective one-dimensional exchange constant

(9) is comparable to the maximal ordering temperature in the high-field regime [93].

Similar effective Hamiltonians have been successfully employed, e.g., in the context

of SrCu2(BO3)2 [94]. However, the model for azurite [69] has the advantage that the bare

dimer exchange constant J2 is substantially bigger than any other exchange constant.

Hence, we may not only expect less terms to be relevant in the effective Hamiltonians

than in the case of SrCu2(BO3)2 [94], but also better quantitative validity for the

parameters appropriate to azurite [69] if the parameters of the effective models are

determined carefully.

Finally, we note that the magnetocaloric effect has been widely used at a qualitative

level for the experimental determination of the phase diagram of spin systems in

a magnetic field (see, e.g., [95–101]) and there is indirect evidence for a strong

magnetocaloric effect in SrCu2(BO3)2 [102]. However, as far as we are aware, there

are only very few quantitative measurements of the cooling capabilities of quantum spin

systems [103, 104] and in particular highly frustrated magnets [24, 105]. Measurements

of the magnetocaloric effect in the high-field region of azurite would therefore certainly

be very interesting.
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