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Abstract

We investigate magnetic instabilities in charge-neutral twisted bilayer graphene
close to so-called “magic angles” using a combination of real-space Hartree-
Fock and dynamical mean-field theories. In view of the large size of the unit
cell close to magic angles, we examine a previously proposed rescaling that
permits to mimic the same underlying flat minibands at larger twist angles.
We find that localized magnetic states emerge for values of the Coulomb inter-
action U that are significantly smaller than what would be required to render
an isolated layer antiferromagnetic. However, this effect is overestimated in
the rescaled system, hinting at a complex interplay of flatness of the mini-
bands close to the Fermi level and the spatial extent of the corresponding
localized states. Our findings shed new light on perspectives for experimental
realization of magnetic states in charge-neutral twisted bilayer graphene.
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1 Introduction

Since the experimental discovery of graphene [1], two-dimensional materials have been at
the focus of intensive research in condensed-matter physics, among others because they
bear great promise for technological applications, see, e.g., Refs. [2, 3]. With respect to
spintronics applications [4], it could nevertheless be a disadvantage that bulk graphene
is non-magnetic and one needs to resort to the enhanced density of states at the Fermi
level close to defects or zigzag borders in order to drive magnetic instabilities (see Ref. [5]
and references therein). Recently, a twist appeared in the field when superconducting and
correlated insulating states were discovered in experiments on bilayer graphene where one
layer is rotated with respect to the other by a so-called “magic” angle [6, 7], see Fig. 1(a)
for an illustration of such a “twisted” honeycomb bilayer, Ref. [8] for a summary of some
recent developments, and Refs. [9–14] for examples of resulting theoretical efforts. Even
if the nature of the correlated insulating state in these systems remains under debate
(see, e.g., Refs. [15–25]), it is reminiscent of the textbook antiferromagnetic insulator that
appears in the Hubbard model for strong on-site Coulomb interaction U [26]. Indeed, the
defining feature of the magic angles [27–31] is the emergence of flat minibands around
the Fermi level such that the relative importance of intrinsic interactions in graphene is
enhanced. It has been demonstrated experimentally that ferromagnetism emerges when a
suitable number of electrons is doped into these flat bands [32], a fact that might actually
be a manifestation of the general phenomenon of flat-band ferromagnetism in the Hubbard
model for suitable filling fractions [33].

Here we reexamine the one-band Hubbard model for twisted bilayer graphene (TBG)
and demonstrate that magnetism occurs also in the charge-neutral (half-filled) system at
low values of the on-site Coulomb interaction U , thus placing magnetic states, including
an antiferromagnetic one, among the competitors for the instabilities in charge-neutral
magic-angle twisted bilayer graphene.

We start from the tight-binding model of Refs. [28, 31]. The resulting non-interacting
band structure at the first magic angle θ = 1.08◦ is shown by the full blue line in Fig. 1(b)
and the corresponding total density of states (DOS) in Fig. 1(c). The four flat minibands
and the related strong enhancement of the DOS at EF are evident. On top of that, we add
Coulomb interactions between the electrons in terms of a local on-site Hubbard interaction
U . The resulting magnetic instabilities are then investigated by a combination of real-space
static mean-field theory (MFT) [5] and dynamical mean-field theory (DMFT) [34–36]. As
an alternative to MFT, one could determine the instabilities of the paramagnetic state
with a random-phase approximation (RPA) analysis [37], and we present results from
such an RPA analysis in appendix A.

2 Geometry of twisted bilayer graphene (TBG)

Let us start by explaining the geometry of TBG in more detail. A single layer of graphene
consists of carbon atoms arranged in a honeycomb lattice such that the unit cell includes
two sites. We then construct a periodic commensurate bilayer structure parameterized by
two integers m, n using the method of Refs. [27, 28, 31, 38, 39]. m and n are coordinates
with respect to the lattice vectors of a single graphene layer a1,2 = a(

√
3,±1)/2. The

rotation angle for such a commensurate structure (moiré pattern) is then given by

cos θ =
n2 +m2 + 4mn

2(n2 +m2 +mn)
, (1)
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Figure 1: (a) Moiré pattern for a twist angle θ = 3.89◦, [(n,m) = (8, 9)] with the identifi-
cation of magnified regions with AB, AA, and BA stacking. (b) Band structure calculated
for a system with θ = 1.08◦, [(n,m) = (30, 31)] and θeff = 1.08◦, [(n,m) = (8, 9)], (c) total
density of states (DOS) corresponding to panel (b). The almost flat minibands at zero
energy and corresponding large DOS peaks exhibit good agreement between the rescaled
and non-scaled systems.

and the fundamental vectors of the TBG superlattice are t1 = na1 + ma2 and t2 =
−ma1 + (m+ n)a2. The number of atoms in the moiré cell is given by

Nc = 4(n2 +m2 +mn) . (2)

Figure 1(a) shows the resulting moiré pattern for (n,m) = (8, 9) corresponding to a twist
angle θ = 3.89◦ and Nc = 868 atoms in the moiré cell.
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3 Model Hamiltonian

We start from the tight-binding model for the pz orbitals of the carbon atoms in charge-
neutral TBG: Ĥ = Ĥ0 + Ĥint, where Ĥ0 is the single-electron Hamiltonian and Ĥint is the
electron-electron interaction. This leads to the one-band Hubbard model

Ĥ =
∑
i,j,σ

t(ri; rj) d̂
†
iσd̂jσ + U

∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
, (3)

where d̂†iσ and d̂iσ are the creation and annihilation operators of an electron with spin

projection σ = {↑, ↓} at site i and n̂i =
∑

σ d̂
†
iσd̂iσ is the total electron density at site i.

The hopping parameters t(ri; rj) between two pz orbitals located at ri and rj are given
in Refs. [28, 31]. The second term in Eq. (3) describes the on-site Coulomb repulsion.
The resulting non-interacting band structure (U = 0) at the first magic angle θ = 1.08◦

is shown by the full blue line in Fig. 1(b). This case corresponds to (n,m) = (30, 31)
and thus to a moiré cell with Nc = 11164 sites. Dealing with such big unit cells will be
challenging even for a one-band model and even within mean-field theory (MFT) and thus
we will explore an idea of Ref. [40] to reduce the numerical effort.

The precise non-interacting band structure depends not only on the geometry, but ev-
idently also on the hopping parameters t(ri; rj), and in particular the ratio between intra-
and interlayer hopping. Let θ and θ′ be the angles corresponding to two commensurate
moiré structures and

Λ =
sin θ′

2

sin θ
2

. (4)

Then the rescaling t′0 = Λ t0 of the nearest-neighbor intralayer hopping while keeping
the interlayer hopping unchanged maps the low-energy band structure from the unprimed
to the primed geometry [40]. The panels (b) and (c) of Fig. 1 illustrate this mapping
for the first magic angle from θ = 3.89◦ to θeff ≡ θ′ = 1.08◦. Indeed, the dashed red
line reproduces both the low-energy band structure and the density of states well at
the expense of reducing the nearest-neighbor intralayer hopping from the physical value
t0 = 2.7 eV [5, 41] to t′0 ≈ 0.75 eV, i.e., modifying the high-energy physics. With different
rescaling factors, i.e., t′0 ≈ 0.90 eV and 1.02 eV, we can also model the angles θ = 1.30◦

and 1.47◦ in the (n,m) = (25, 26) and (22, 23) systems, respectively by the same effective
(n,m) = (8, 9) system.

Ref. [40] suggested that the on-site Coulomb interaction should scale in the same way
as the intralayer hopping parameters, U ′ = ΛU although this is less evident than the
rescaling of the hopping parameters, as we will also see in the results to be presented
below.

In the following section 4 we will first explore this rescaling trick in order to perform
a detailed study using the case (n,m) = (8, 9) (Nc = 868). In section 5 we will then
check for some representative cases to what extent the conclusions do indeed apply to the
unscaled system, including the first magic angle, i.e., (n,m) = (30, 31) (Nc = 11164).

4 Rescaled system

In this section, we investigate the Hubbard model (3) for twisted bilayer graphene (TBG)
using rescaled interlayer hopping parameters, as outlined in the previous section. We
will start with a systematic study using static MFT and then use a more sophisticated
dynamical mean-field theory (DMFT) to argue that the findings of the simple MFT are
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qualitatively correct even if there is a quantitative renormalization of the values of the
on-site Coulomb interaction U .

4.1 Static mean-field theory (MFT)

Static MFT is a well-established method to investigate the magnetism in graphene (see,
e.g., chapter 3.1 of [5] and Refs. [35, 36, 40, 42, 43]) such that here we summarize only the
essential features. It amounts to the Hartree-Fock approximation of the interaction term
in Eq. (3),

U ni↑ni↓ ≈ U (〈ni↑〉ni↓ + 〈ni↓〉ni↑ − 〈ni↑〉 〈ni↓〉) , (5)

where 〈niσ〉 is the average electron occupation number with spin σ at site i. Note that the
approximation (5) decouples the operators for the two spin sectors and thus gives rises to
a quadratic Hamiltonian in each of them where the other spin sector enters only via the
site-dependent mean fields 〈niσ〉 that have to be determined self-consistently. We focus on
charge-neutral TBG that has exactly one electron per site, i.e., we work with the half-filled
Hubbard model. A self-consistent solution is found iteratively, where in each step Nc×Nc

matrices need to be diagonalized and an integral over the moiré Brillouin zone has to be
calculated, that we approximate by a uniform grid of k points. We iterate this procedure
until the maximum change of a density is below 10−6. Given the necessity to diagonalize a
large number of moderately-sized matrices, even this elementary MFT approach becomes
CPU-time intensive in the present situation. Some checks indicate that a k-grid of at least
9 × 9 points is required to eliminate artifacts of this discretization while more points do
not change the conclusions. We therefore show results below that have been obtained for
9× 9 k points.

The RPA analysis that we present in appendix A reveals different competing magnetic
instabilities at different values of q for the present model. There is a periodic solution with
an antiferromagnetic internal structure. The dominant instabilities are actually found at
q 6= 0, i.e., they should have a larger unit cell than the twisted bilayer lattice, and
they have a ferromagnetic structure inside a moiré cell. Motivated by the fact that the
Hubbard model on a single honeycomb layer becomes antiferromagnetic at large U [44], we
focus here on the antiferromagnetic mean-field solution. The RPA analysis of appendix A
predicts a critical value Uc ≈ 0.23 t′0 for the antiferromagnetic state of the twisted bilayer
system with θeff = 1.08◦, an order of magnitude below the critical value of a single layer,
that for nearest-neighbor hopping is known to be UMFT

c /t ≈ 2.23 [44].
Figure 2 shows MFT results for the total magnetization per moiré cell and its maximum

value, defined as

Mtotal =

Nc∑
i

|mz(~ri)| , mz(~ri) =
〈ni↑〉 − 〈ni↓〉

2
, (6)

Mmax = max{|mz(~r1)| , · · · , |mz(~rNc)|} , (7)

respectively. We first focus on the first magic angle θeff = 1.08◦ (red data in Fig. 2). Here,
we find a small albeit finite magnetization for values of U/t as low as

U1.08◦
c1,MFT/t

′
0 ≈ 0.32 . (8)

We note that convergence is delicate close to Uc1,MFT and sensitive to the chosen k grid.
The result (8) should thus be considered as an upper bound. Thus, we conclude that this
value is consistent with the prediction of the RPA analysis of appendix A. Given that
the magnetization for these small values is due to the four flat minibands and that there
is a low number of associated states (4 per moiré cell), the total magnetization (6) for
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Figure 2: MFT results for the magnetization of the rescaled twisted bilayer system as a
function of on-site Coulomb interaction U/t′0. Panels (a) and (b) show the total magneti-
zation per effective Nc = 868 moiré cell and its maximum, respectively. For comparison,
results for a single graphene layer with the same intralayer hopping parameters are also
shown in panel (b). In panel (b), red, green, and blue arrows mark the critical points for
θeff = 1.08◦, θeff = 1.30◦, and θeff = 1.47◦, respectively.

small values of U is small and thus seen more clearly in the inset of Fig. 2(a) than in the
main panel. Indeed, for U/t′0 . 1.5, the total magnetization per moiré cell remains below
2 = 4 · 1/2, consistent with it coming mainly from the four flat minibands.

An alternative perspective is given by the maximum magnetization (7) that is shown
in Fig. 2(b). Here, one can firstly observe the onset of magnetization around Uc1 more
clearly than in the main panel of Fig. 2(a). For comparison, the main panel of Fig. 2(b)
also includes the result for a single layer with the same intralayer hoppings as in the
twisted bilayer system. One observes firstly that additional long-range hoppings within
each layer reduce the critical value slightly to UMFT

c /t ≈ 2.09 as compared to the nearest-
neighbor result UMFT

c /t ≈ 2.23 [44]. In the region U/t′0 & 2, the magnetization of the
bilayer system is slightly enhanced with respect to the single-layer case, as might be
expected thanks to the additional intralayer couplings. However, the transition to full
magnetization necessarily involves AB and BA stacking regions (see Fig. 1(a)) that are
geometrically frustrated. Consequently, one expects a complex magnetic state in this
transition region. A full analysis of the transition to a fully magnetized system is beyond
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the scope of the present work, but we note that convergence is delicate also in this second
transition region, as exemplified by the outlier at U/t′0 = 2.4 in the θeff = 1.47◦ data.

The most important finding in the present context is that magnetism arises in the
effective twisted bilayer model at the magic angle for Coulomb interactions U that are an
order of magnitude smaller than for decoupled single graphene layers. It should be noted
that the q = 0 magnetic solution considered here only corresponds to a local, but not the
global minimum of the energy such that the true critical value of U1.08◦

c1,MFT is probably even

smaller than the result (8) (U1.08◦
c1,MFT ≈ 0.15 t′0 according to the RPA analysis of appendix

A).
Figure 2 also includes two examples for larger twist angles θeff = 1.30◦ and 1.47◦ (green

and blue data, respectively). Many of the preceding remarks also apply to these two cases
such that we focus on their peculiarities. Remarkably, the case θeff = 1.30◦ yields an even
smaller U1.30◦

c1,MFT/t
′
0 ≈ 0.21 than for θeff = 1.08◦. Actually, while the velocity at the K

point only vanishes at the first magic angle θ = 1.08◦, the minibands have a very small
bandwidth over the entire range until θ = 1.30◦. However, when one goes to θeff = 1.47◦,
the critical value of the onsite Coulomb repulsion increases to U1.48◦

c1,MFT/t
′
0 ≈ 1.0. This

is still significantly smaller than the critical value of a single layer UMFT
c /t ≈ 2.09, but

clearly larger than in the two other cases, as expected for minibands close to the Fermi
level that now have both a finite Fermi velocity and a significant bandwidth.

For a more detailed discussion of the magnetic state found above Uc1 but before the
system becomes completely magnetic, we show in Fig. 3 results for the θeff = 1.08◦ system
and a representative value of the on-site Coulomb interaction U/t′0 = 1. The top panel
shows the spatial structure of the magnetization pattern that we find to be localized in the
AA stacking region. Thus, in this region the magnetic state of the twisted bilayer system
resembles that of AA stacked bilayer graphene, but at a significantly lower value of U than
would be required for the simple AA system to become magnetic. A different perspective
of this magnetic pattern is provided by the lower right panel of Fig. 3 that presents a
diagonal line cut of the magnetization. The lower left two panels of Fig. 3 show the spin-
resolved local density of states (LDOS) in the AA and AB stacking regions. Interestingly,
in the AA region one finds two peaks in the LDOS at low energies that are absent in the
AB stacking region. The presence of these peaks correlates with the magnetic state, thus
rendering scanning tunneling microscopy (STM) experiments a promising candidate for
the detection of such a magnetic state.

4.2 Dynamical mean-field theory (DMFT)

Even though MFT has been shown to be remarkably successful to qualitatively describe
static [42] and dynamic properties [43] in the semi-metallic phase of single-layer graphene,
it is known to become quantitatively less accurate for larger values of U . For example, the
transition to the antiferromagnetic insulator in the nearest-neighbor hopping case is found
at UMFT

c /t ≈ 2.23 in MFT [44] while more sophisticated and accurate methods place it
at a larger Uc/t ≈ 3.8 [45–48].

DMFT [34] takes local charge fluctuations into account and thus improves the quan-
titative treatment of the on-site Hubbard interaction. Indeed, already single-site DMFT
shifts the estimate of the critical point to the range UDMFT

c /t = 3.5, . . . , 3.7 [35], i.e.,
remarkably close to the most accurate estimates [45–48]. Following previous work, we
employ here a real-space version of DMFT [36]. DMFT maps the lattice Hamiltonian
Eq. (3) onto a set of quantum impurity problems via the local Green’s function for site i

7
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Figure 3: Top panel: MFT result for the spatial magnetization profile of a rescaled twisted
bilayer with θeff = 1.08◦, and the on-site Coulomb interaction U/t′0 = 1. The bottom
panels show the local density of states (LDOS) in the AA and AB regions for both spin
projections (left two panels), and a diagonal line cut of the local magnetic moment (right
panel).

inside the moiré supercell [34]

Giσ(z) =

∫
dk
(
zI− Ĥ0(k)−Σr

σ(z)
)−1

i,i
. (9)

Here Ĥ0 is the single-particle part of Eq. (3). The main approximation is that the local
self-energy matrix for spin projection σ, Σr

σ(z), that plays the role of a dynamical mean
field, depends only on frequency z, but not on momentum k. Eq. (9) can be used to define
a collection of Nc single-impurity Anderson models, that we solve here with the numerical
renormalization group (NRG) [49–51] and iterate until self-consistency is reached [52,53].
We refer to Refs. [35, 36] for details on the procedure and just mention two peculiarities
for the present case. Firstly, Eq. (9) requires evidently a combination of integration over
the moiré Brillouin zone while at the same time solving coupled problems for the Nc

atoms inside the moiré supercell. Secondly, even if the band structure of Fig. 1(b), (c)
is almost particle-hole symmetric, there is no strict particle-hole symmetry in the present
case in contrast to previous work [35, 36]. Consequently, the chemical potential needs to
be adjusted appropriately during each iteration in order to ensure half filling. Since the
chemical potential enters into Eq. (9) in a non-linear fashion, this renders the numerical
problem even more challenging, thus limiting DMFT not only to the rescaled system, but
also the number of U -values considered.
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Figure 4: DMFT results for the magnetization versus Hubbard interaction U/t′0 for the
rescaled system with θeff = 1.08◦. For comparison, results for a single graphene layer are
also shown. Lines are guides to the eye. The inset shows the spatial magnetization for
U/t′0 = 2.5.

Figure 4 presents some DMFT results for the rescaled system with θeff = 1.08◦, i.e.,
Nc = 868. Comparison of the DMFT results for the magnetization versus U/t′0 in Fig. 4
with the MFT results of Fig. 2 shows qualitatively similar behavior. At a technical level,
the DMFT results are a bit more noisy. This is due to the logarithmic frequency discretiza-
tion inherent to NRG [51], to DMFT being generally numerically more expensive, and in
particular the difficulty to adjust the chemical potential appropriately. Nevertheless, the
main quantitative difference remains that the critical Uc of a single layer is pushed to
larger values as compared to simple MFT, and so is the phenomenon of a magnetization
arising in the AA stacking region of the twisted bilayer system. Nevertheless, also DMFT
clearly detects a magnetization in the twisted system for values of the local Coulomb in-
teraction down to U/t′0 = 1, amounting to a reduction of the critical value as compared to
the single-layer system by at least a factor 3.5 at θeff = 1.08◦. The inset of Fig. 4 shows
an example of the spatial magnetization pattern. This is again very similar to the MFT
result shown in the main panel of Fig. 3, just the value of U/t is renormalized to larger
values, namely from 1 for the MFT example to 2.5 of the DMFT example. Note that
U/t′0 = 2.5 would give rise to a bulk magnetic state within MFT while the DMFT result
in the inset of Fig. 4 is still clearly localized in the AA stacking region. Overall, DMFT
confirms the qualitative conclusions derived from MFT; it just provides a quantitatively
more accurate account of the local Coulomb interaction U .
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Figure 5: MFT results for the magnetization of the non-scaled twisted bilayer system as
a function of U/t0 at rotation angles θ = 1.08◦, θ = 1.30◦, and θ = 1.47◦, respectively.

5 Non-scaled system

We will now present some results for the non-scaled system. The scaling trick has allowed
us to apply the quantitatively more accurate DMFT, but the size of the moiré cells of
the non-scaled systems will exceed those accessible to DMFT such that we focus on static
MFT in the present section. We use the same parameters as in section 4.1 (convergence
criterion 10−6, 9× 9 k-grid).

Figure 5 shows MFT results for the total magnetization per moiré cell as a function
of U/t0 at rotation angles θ = 1.08◦, θ = 1.30◦, and θ = 1.47◦. The corresponding moiré
cells contain N = 11164, 7804, and 6076 carbon atoms, respectively. At first sight, the
behavior is very similar to that found in the inset of Fig. 2(a) for the rescaled system
(the smaller number of data points is due to the significantly enhanced computational
effort). In particular, Mtotal . 2 remains true for most values of U/t0 shown in Fig. 5,
in agreement with again the magnetism beging due to the four flat minibands that are
closest to the Fermi level.

The key items are the values of the critical Coulomb interaction that one may estimate
as U1.08◦

c1,MFT/t0 ≈ 0.85, U1.30◦
c1,MFT/t0 ≈ 0.55, and U1.47◦

c1,MFT/t0 ≈ 1 with a particularly large
uncertainty on the last result given the very slow onset of magnetization for θ = 1.47◦.
According to Ref. [40], in the given normalization, these values should correspond to those
found in the rescaled system. This works out more or less for the case θ = 1.47◦ where
in both cases, the critical U/t ratio is close to 1. However, the values for U1.08◦

c1,MFT and

U1.30◦
c1,MFT in the non-scaled system are bigger than those we might have expected from the

rescaled case. Indeed, the order of the discrepancy corresponds to another factor Λ such
that U scales with Λ2 and not just with Λ. A possible interpretation of this observation
is the following: Λ actually also appears in the scaling of the linear length [40]. Now the
magnetic instability at the angles θ = 1.08◦ and 1.30◦ is related to a state localized in the
AA region, see, e.g., top panel of Fig. 3. Thus, the area of the relevant spatial region scales
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with Λ2, accordingly the number of contributing local on-site repulsions also scales with
Λ2 such that U should also scale with Λ2 rather than Λ in the cases where the physics is
controlled by localized states.

In spite of this additional factor, it remains true that U1.30◦
c1,MFT/t0 ≈ 0.55 < U1.08◦

c1,MFT/t0 ≈
0.85, and that there is still a significant reduction by factors of 4 respectively 3 with respect
to the critical value Uc for a single graphene layer. In light of the preceding observations,
we suggest that not only the non-interacting bandwidth, but also the size of the moiré cell
matter. While both the θ = 1.08◦ and 1.30◦ bilayers have a small bandwidth, the moiré
cell of the latter is smaller, and this appears to result in a smaller critical value of Uc1.
The size of the moiré cell is smallest for θ = 1.47◦ among the three cases studied, but
the value of Uc1 is biggest, most likely because in this case the minibands closest to the
Fermi energy are no longer flat. Nevertheless, even in this case one observes emergence
of magnetism for values of U that are about a factor 2 smaller than would be needed to
render a single layer antiferromagnetic.

To conclude this discussion, let us have a closer look at the spatial structure of the
resulting magnetic states. Figure 6 shows the spatial magnetization profile for non-scaled
moiré unit cells with angles θ = 1.47◦ and at the first magic angle θ = 1.08◦. For
illustration purposes, we consider a value of U just above the first critical point Uc1, i.e.
U/t0 = 1.50 and 1.00, respectively. Like for the recaled system shown in the top panel of
Fig. 3, we find an antiferromagnetic pattern that is localized in the AA region. However,
thanks to the improved spatial resolution, we can now observe a clearer separation of the
magnetic regions between neighboring cells. For slightly larger U , the magnetic region
grows, but the structure remains qualitatively similar as in Fig. 6.

6 Conclusions and perspectives

We have investigated the onset of magnetism in charge-neutral “magic-angle” twisted
bilayer graphene with numerical real-space static and dynamical mean-field approaches. In
the rescaled system we found that localized magnetic states appear in the twisted bilayer
system for values of the on-site Coulomb repulsion U that are an order of magnitude
smaller than those needed to render a single layer magnetic. We then showed that the
non-scaled system exhibits qualitatively similar behavior. The reduction is less impressive
(up to a factor 4 in the cases investigated), but still remarkable. We note that this finding
is consistent with a recent diagrammatic real-space mean-field study [54] that focused on
two selected values of U .

The rescaling proposed in Ref. [40] actually reproduces the flat minibands close to
the Fermi level very well, compare Fig. 1. Our results therefore demonstrate that the
band structure is not the only factor that matters. Indeed, the corresponding states are
localized in AA stacking regions. This suggests a scaling of the critical Uc with area rather
than linear size, as is indeed roughly consistent with our findings for θ = 1.08◦ and 1.30◦.
A more quantitative analysis would involve computation of the Coulomb matrix elements
with respect to the Wannier functions [11,15,55–58] of the rescaled and non-scaled systems,
respectively. However, such an analysis goes beyond the scope of the present work.

A side effect of the observation that the spatial extent of the localized states also
matters is that smaller unit cells favor magnetism over bigger ones. Indeed, we find onset
of magnetism for θ = 1.30◦ for smaller values of Uc than for the first magic angle θ = 1.08◦.
The system with θ = 1.47◦ has an even smaller unit cell than that with θ = 1.30◦, but at
this larger angle there is no longer any really flat band close to the Fermi level such that
here the value of Uc is found to be larger. A related point is that magic angles are usually
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Figure 6: The top and bottom panels show the spatial magnetization profile of non-scaled
systems at θ = 1.47◦ and θ = 1.08◦, respectively. The corresponding numbers of atoms in
the unit cell are Nc = 6076 and Nc = 11164.

defined via a vanishing Fermi velocity [27–31] while in fact it may be more relevant that
the entire minibands are narrow. Indeed, the latter criterion is satisfied over the entire
range θ = 1.08 . . . 1.30◦ such that the smaller unit cell can then give rise to a lower Uc at
the upper boundary of this range of angles.

It should be noted that in our mean-field investigations we have focussed on antifer-
romagnetic solutions that are periodic over moiré cells. However, the RPA analysis of
appendix A suggests that there are other competing instabilities, and indeed the mean-
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field self-consistency loop sometimes converges to other solutions. In particular, the true
lowest-energy state might be modulated in real space and exhibit an internal ferromag-
netic structure, like in the case of an electric bias between the two layers [40]. Should
this indeed be the case, this can only further reduce the value of the Uc for the onset of
magnetism such that our estimates are in fact upper bounds. The main conclusion that
twisting leads to a significant reduction of the critical Uc for the appearance of magnetism
is thus unaffected by the assumptions on the nature of the ground state.

Another point to note is that we find a stronger reduction of the critical interaction Uc
at charge neutrality than a previous RPA investigation [37]. This difference can be traced
to a different tight-binding model at the starting point. Indeed, the authors of Ref. [37]
have implemented the corrugation of Ref. [55] that takes a modulation of the distance
between the two layers in different stacking regions into account. However, other factors
may also be relevant in an experiment such as strain when the bilayer is deposited on a
substrate. In the same spirit, Coulomb interactions should actually be long-range [59],
at least for free-standing bilayers, since atomically thin layers cannot screen the Coulomb
repulsion between electrons. Still, screening will depend on the actual substrate and may
thus depend on the exact experimental conditions. Even other factors such as spin-orbit
interactions that are sufficiently weak to be usually negligible in graphene may matter
in the present situation given the significant reduction of the kinetic energy scale in the
twisted bilayer system. Thus, which of several competing instabilities finally wins in
an experimental realization may depend on a number of factors; here we have simply
demonstrated that a magnetic instability (possibly an antiferromagnetic one) is one of the
competitors in charge-neutral twisted bilayer graphene.

The macroscopic magnetization of a ferromagnetic state can be detected, e.g., via the
Hall effect [32]. Antiferromagnetic or almost ferromagnetic, but modulated spiral states
are more difficult to detect experimentally since they do not give rise to a macroscopic
moment. In bulk systems, one would resort to (neutron) scattering to detect such states,
but in the present nanoscopic setting this may not be feasible. The best option may
thus be scanning tunneling spectroscopy (STS) experiments [60] in order to detect the
corresponding characteristic features in the local density of states (see lower panels of
Fig. 3). In fact, the corresponding signatures might already have been observed in recent
STS experiments [61–63]. However, the latter samples are subject to heterostrain [64, 65]
which also gives rise to a splitting in the electronic density of states. An unambiguous
detection of a magnetic state would thus require a detailed investigation of the variation
of the tunneling spectrum with the different stacking regions.

Returning to theoretical questions, an alternative approach would be via low-energy
continuum models in the spirit of Ref. [30]. One reason why we have rather used the
rescaled model [40] here is that, as illustrates Fig. 1, it reproduces the band structure well
over a wide range of energies and not just the flat minibands close to the Fermi level.
However, in the range of intermediate values of U/t where mainly the flat minibands con-
tribute to the magnetism, effective low-energy models would have the advantage of being
more amenable to numerical approaches [14,66–69] such that we suggest the investigation
of magnetism by such methods as a topic for further studies.

A further interesting issue that goes beyond questions accessible to low-energy effec-
tive models would be the full phase diagram of the twisted bilayer systems up to larger
values of U/t. Indeed, the results underlying Fig. 2 suggest that there is no single simple
transition to a bulk magnetized system, but that this transition actually proceeds via
several intermediate states in the region U/t′0 ≈ 2. Given that magnetic interactions in
the AB and BA stacking regions are geometrically frustrated (compare Fig. 1(a)), even
the magnetic state in the Heisenberg limit U/t→∞ is far from obvious.
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A Noninteracting susceptibility of the rescaled system

In this appendix, we provide an RPA analysis of the noninteracting susceptibility that
is similar in spirit to Ref. [37]. However, here we focus on the rescaled system with
θeff = 1.08◦.

We adopt the multiorbital RPA approach to study the instability of the paramagnetic
state [70,71].

The multiorbital spin susceptibilities tensor can be expressed in terms of the Matsubara
spin-spin correlation function:

[
χ(q, ω)

]
st

=
1

3

β∫
0

dτ eiωτ
〈
Tτ Ŝs(q, τ)Ŝt(−q, 0)

〉
(10)

with the Matsubara frequency ω, the imaginary time τ and spin operators Ŝ at orbitals s,
t. The noninteracting (zero-order) susceptibility is just a simple bubble diagram involving
two Green’s functions. Using the spectral representation of the Green’s functions, this can
be expressed as

[
χ0(q, iω)

]
st

= − 1

Nc

∑
k

∑
µ,ν

asµ(k)at∗µ (k)asν(k + q)at∗ν (k + q)

iω + Eν(k + q)− Eµ(k)

[
nF (Eν(k + q))−nF (Eµ(k))

]
,

(11)
where µ, ν are band indices, asµ(k) and Eµ(k) are the µ-th eigenvalue and eigenvector
of the noninteracting Hamiltonian, respectively, and nF is the Fermi-Dirac distribution
function.

The Coulomb interaction can then be included at the mean-field level and one arrives
at a so-called “RPA” (or “Stoner”, see, e.g. Refs. [26, 72]) formula for the interacting
susceptibility

χ(q, iω) =
χ0(q, iω)

I− χ0(q, iω)U
, (12)

where in the paramagnetic state we can use χ0 according to Eq. (11). According to
Eq. (12), the static susceptibility χ(q, iω = 0) diverges whenever U equals one of the
eigenvalues of the tensor χ0(q, iω = 0)−1. One can use this identity to determine the mean-
field critical Uc, and indeed, the critical Uc of an infinite graphene sheet was originally
determined in this manner [44]. The value of q and the corresponding eigenvector yield
information about the expected magnetic state for U > Uc.

The tensor of Eq. (11) is symmetric, but computing all N2
c entries for a fixed q is time-

consuming since each of them involves a sum over reciprocal space and two sums over
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all energy levels. In order to keep the CPU time manageable, we have limited the sum∑
µ,ν to states that are close to the Fermi energy. The latter approximation is physically

justified since the ground-state ordering should be dominated by the quasi-flat bands
close to the Fermi energy. A similar approximation to the Matsubara sums has also been
used in Ref. [37] except that we use here a more radical sharp cutoff. Nevertheless, we
have checked that taking the 50 to 100 states closest to the Fermi energy into account is
sufficient to yield no visible truncation effects; we used 200 states to be on the safe side.
Since we use a finite grid for the integration over the moiré Brillouin zone, the sum Eq. (11)
consists strictly speaking of a finite number of poles. In order to smooth these out, we
introduce a broadening parameter and evaluate Reχ0(q, iω = iη) such that we obtain a
Lorentzian broadening of width η at iω = 0. Apart from the truncation in energy space,
the momentum grid, and the broadening parameter η, the result for χ0(q, iω = 0) also
depends on temperature T . T = 10−8 t seems to be sufficiently low to ensure ground-state
physics. However, there is a delicate balance between broadening parameter η and the
grid in reciprocal space. If η is too large, it will smear out any peaks and thus reduce
the values of χ(q, iω = 0). On the other hand, for a too small value of η, the momentum
discretization will become visible. We found that the combination η = 5 · 10−5 t and a
uniform 9 × 9 grid of points (kx, ky) yield a good compromise such that we will present
results for these parameters here.

Figure 7(a) shows the distribution of the leading eigenvalue of the static susceptibility
tensor χ0(q, iω = 0) in the moiré Brillouin zone. In contrast to single layers and AA-
stacked bilayer graphene that prefer a single type of ordering at q = 0, in the present
case the maximal eigenvalue of χ0(q, iω = 0) is rather flat in reciprocal space. The global
maximum is neither at q = Γ nor at the two symmetry-related points K and K′, but
rather at another point qmax at the boundary of the first Brillouin zone. The values are
maxχ0(q, iω = 0) = 4.35378/t′0, 4.99189/t′0, and 6.61892/t′0, for q = Γ, K, and qmax,
respectively. According to the discussion around Eq. (12), this predicts a critical value
Uc = 0.229686 t′0 for a q = 0 state and globally Uc = 0.151082 t′0, but for a state with a
spatial modulation with a wave vector qmax over moiré cells.

Panels (b)–(d) of Fig. 7 show the corresponding eigenvectors of the susceptibility ten-
sor. At the Γ point (panel (b)), one observes a staggered sign change between nearest
neighbors with the maxima located in the AA region. This corresponds to the periodic
antiferromagnetic state that we have investigated in the main text. The analogous result
for the eigenvector at the K (K′) point is shown in Fig. 7(c). Here we find a ferromagnetic
solution in each moiré cell with the maximum again in the AA region, but the correspond-
ing value of q implies that the corresponding state should be accompanied by a tripling
of the unit cell in real space. Finally, Fig. 7(d) shows the eigenvector at qmax. The local
structure inside a moiré cell is still ferromagnetic, but exhibits a stronger internal modu-
lation. Furthermore, the corresponding MFT solution should be modulated with a wave
vector qmax in real space. Examination of further values of q reveals an antiferromagnetic
internal structure close to the Γ point while the ferromagnetic internal arrangement is
predominant in other regions of the Brillouin zone.
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[4] A. Avsar, H. Ochoa, F. Guinea, B. Özyilmaz, B. J. van Wees and I. J. Vera-Marun,
Colloquium: Spintronics in graphene and other two-dimensional materials, Rev. Mod.
Phys. 92, 021003 (2020), doi:10.1103/RevModPhys.92.021003.

[5] O. V. Yazyev, Emergence of magnetism in graphene materials and nanostructures,
Rep. Prog. Phys. 73, 056501 (2010), doi:10.1088/0034-4885/73/5/056501.

[6] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras and P. Jarillo-
Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Na-
ture 556, 43 (2018), doi:10.1038/nature26160.

[7] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-
Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori and P. Jarillo-

16

http://dx.doi.org/10.1038/nature11458
http://dx.doi.org/10.1126/science.aac9439
http://dx.doi.org/10.1103/RevModPhys.92.021003
http://dx.doi.org/10.1088/0034-4885/73/5/056501
http://dx.doi.org/10.1038/nature26160


SciPost SciPost Phys. 11, 083 (2021)

Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene super-
lattices, Nature 556, 80 (2018), doi:10.1038/nature26154.

[8] E. Y. Andrei and A. H. MacDonald, Graphene bilayers with a twist, Nature Materials
19, 1265 (2020), doi:10.1038/s41563-020-00840-0.

[9] B. A. Bernevig, Z.-D. Song, N. Regnault and B. Lian, Twisted bilayer graphene. I.
Matrix elements, approximations, perturbation theory, and a k · p two-band model,
Phys. Rev. B 103, 205411 (2021), doi:10.1103/PhysRevB.103.205411.

[10] Z.-D. Song, B. Lian, N. Regnault and B. A. Bernevig, Twisted bilayer
graphene. II. Stable symmetry anomaly, Phys. Rev. B 103, 205412 (2021),
doi:10.1103/PhysRevB.103.205412.

[11] B. A. Bernevig, Z.-D. Song, N. Regnault and B. Lian, Twisted bilayer graphene. III.
Interacting Hamiltonian and exact symmetries, Phys. Rev. B 103, 205413 (2021),
doi:10.1103/PhysRevB.103.205413.

[12] B. Lian, Z.-D. Song, N. Regnault, D. K. Efetov, A. Yazdani and B. A. Bernevig,
Twisted bilayer graphene. IV. Exact insulator ground states and phase diagram, Phys.
Rev. B 103, 205414 (2021), doi:10.1103/PhysRevB.103.205414.

[13] B. A. Bernevig, B. Lian, A. Cowsik, F. Xie, N. Regnault and Z.-D. Song, Twisted
bilayer graphene. V. Exact analytic many-body excitations in Coulomb Hamiltonians:
Charge gap, Goldstone modes, and absence of Cooper pairing, Phys. Rev. B 103,
205415 (2021), doi:10.1103/PhysRevB.103.205415.

[14] F. Xie, A. Cowsik, Z.-D. Song, B. Lian, B. A. Bernevig and N. Regnault, Twisted
bilayer graphene. VI. An exact diagonalization study at nonzero integer filling, Phys.
Rev. B 103, 205416 (2021), doi:10.1103/PhysRevB.103.205416.

[15] H. C. Po, L. Zou, A. Vishwanath and T. Senthil, Origin of Mott insulating behavior
and superconductivity in twisted bilayer graphene, Phys. Rev. X 8, 031089 (2018),
doi:10.1103/PhysRevX.8.031089.

[16] M. Ochi, M. Koshino and K. Kuroki, Possible correlated insulating states in magic-
angle twisted bilayer graphene under strongly competing interactions, Phys. Rev. B
98, 081102(R) (2018), doi:10.1103/PhysRevB.98.081102.

[17] J. M. Pizarro, M. J. Calderón and E. Bascones, The nature of correlations in the
insulating states of twisted bilayer graphene, J. Phys. Commun. 3, 155415 (2019),
doi:10.1088/2399-6528/ab0fa9.
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[60] Y. Xie, B. Lian, B. Jäck, X. Liu, C. L. Chiu, K. Watanabe, T. Taniguchi, B. A.
Bernevig and A. Yazdani, Spectroscopic signatures of many-body correlations in
magic-angle twisted bilayer graphene, Nature 572, 101 (2019), doi:10.1038/s41586-
019-1422-x.

[61] A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watan-
abe, T. Taniguchi, J. Hone, C. Dean, A. Rubio and A. N. Pasupathy, Maximized
electron interactions at the magic angle in twisted bilayer graphene, Nature 572, 95
(2019), doi:10.1038/s41586-019-1431-9.

20

http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/PhysRevB.21.1003
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/PhysRevB.89.155134
http://dx.doi.org/10.1103/PhysRevB.92.075103
http://dx.doi.org/10.1103/PhysRevB.104.115110
http://dx.doi.org/10.1103/PhysRevX.8.031087
http://dx.doi.org/10.1103/PhysRevX.8.031088
http://dx.doi.org/10.1103/PhysRevLett.122.246401
https://arxiv.org/abs/2012.12942
http://dx.doi.org/10.1103/PhysRevB.103.195127
http://dx.doi.org/10.1038/s41586-019-1422-x
http://dx.doi.org/10.1038/s41586-019-1422-x
http://dx.doi.org/10.1038/s41586-019-1431-9


SciPost SciPost Phys. 11, 083 (2021)

[62] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R. Polski, Y. Zhang, H. Ren,
J. Alicea, G. Refael, F. von Oppen, K. Watanabe et al., Electronic correlations
in twisted bilayer graphene near the magic angle, Nature Physics 15, 1174 (2019),
doi:10.1038/s41567-019-0606-5.

[63] Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule, J. Mao and E. Y. Andrei,
Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene,
Nature 573, 91 (2019), doi:10.1038/s41586-019-1460-4.

[64] L. Huder, A. Artaud, T. Le Quang, G. Trambly de Laissardière, A. G. M.
Jansen, G. Lapertot, C. Chapelier and V. T. Renard, Electronic spectrum of
twisted graphene layers under heterostrain, Phys. Rev. Lett. 120, 156405 (2018),
doi:10.1103/PhysRevLett.120.156405.

[65] F. Mesple, A. Missaoui, T. Cea, L. Huder, F. Guinea, G. Trambly de Lais-
sardière, C. Chapelier and V. T. Renard, Heterostrain determines flat bands
in magic-angle twisted graphene layers, Phys. Rev. Lett. 127, 126405 (2021),
doi:10.1103/PhysRevLett.127.126405.

[66] Y. Da Liao, J. Kang, C. N. Breiø, X. Y. Xu, H.-Q. Wu, B. M. Andersen, R. M.
Fernandes and Z. Y. Meng, Correlation-induced insulating topological phases at
charge neutrality in twisted bilayer graphene, Phys. Rev. X 11, 011014 (2021),
doi:10.1103/PhysRevX.11.011014.
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