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The detection of phase transitions is a fundamental challenge in condensed matter physics, traditionally addressed
through analytical methods and direct numerical simulations. In recent years, machine learning techniques have emerged
as powerful tools to complement these standard approaches, offering valuable insights into phase and structure determi-
nation. Additionally, they have been shown to enhance the application of traditional methods. In this work, we review
recent advancements in this area, with a focus on our contributions to phase and structure determination using supervised
and unsupervised learning methods in several systems: (a) 2D site percolation, (b) the 3D Anderson model of localiza-
tion, (c) the 2D J1-J2 Ising model, and (d) the prediction of large-angle convergent beam electron diffraction patterns.

1. Introduction
Identification of critical points separating distinct phases of

matter is a central pursuit in condensed matter and statistical
physics.1, 2) This task requires a thorough understanding of the
global behavior of the many-body system because phenomena
may emerge that are very difficult to derive from microscopic
rules.3) Traditional analytic methods and numerical simula-
tions have proven effective in understanding these complex
systems,4, 5) but they often come with limitations, particularly
in high-dimensional parameter space.6)

Machine-learning (ML) methods, particularly supervised7)

and unsupervised learning techniques,8) have in the last years
appeared in physics as a novel strategy to bypassing some of
these limitations.9–11) Convolutional neural networks (CNN),
a class of deep, i.e., multi-layered, neural networks (DNNs)
in which spatial locality of data values is retained during
training, have, when coupled with a form of residual learn-
ing,12) shown to allow astonishing precision when classifying
images, e.g., of animals13) and handwritten characters,14) or
when predicting numerical values, e.g., of market prices.15)

These supervised learning strategies similarly yield promis-
ing predictions in identifying critical points or phases in pa-
rameter space,16–22) providing an alternative and potentially
more efficient way of exploring complex systems. By now, the
evidence in favour of supervised machine-learning methods’
efficacy in identifying different phases of a physical system
appears compelling.16–22) Unsupervised learning and semi-
unsupervised learning approaches have also demonstrated the
ability to reconstruct the outlines of a system’s phase dia-
gram.23–28) The potential to identify structural changes within
a system further supports the significance of these techniques
in modern scientific exploration.29)

Among the various models studied in the context of
machine learning and statistical physics, the Ising model
on the square lattice has served as an important bench-
mark16, 23, 25–27, 30–42) due to the simplicity of its two ther-
mal phases, the low-temperature ferromagnet and the high-
temperature paramagnet, and the ready availability of its ex-
act solution43) with exactly known critical temperature. We
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note that the use of ML to determine phases from just the spin
configurations suggests that these themselves should contain
sufficient information to identify phases, providing a level of
physical insight that was, while not unknown, at least not as
clear as it now seems. We also mention related work on multi-
layer44) and Potts models,45–47) where the latter include the
Ising model as the q = 2 case.

Percolation can be considered as the q → 1 limit of the
Potts model48) and yields another class of paradigmatic mod-
els to which machine-learning techniques have been applied
to identify the non-spanning and spanning phases.49–54) Previ-
ous ML studies have mostly used supervised learning in order
to find the two phases via ML classification.49, 51) An estimate
of the critical exponent of the percolation transition has also
been given.49) The task of determining the transition thresh-
old, pc, was further used to evaluate different ML regression
techniques.54) For unsupervised and generative learning, less
work has been done.49–51) While some successes have been
reported,50, 55) other works show the complexities involved
when trying to predict percolation states.51)

Disordered electron systems provide quantum systems with
similarly rich phase diagrams. Examples are given by the An-
derson insulator,56) diffusive metals,57) the quantum Hall58, 59)

and quantum anomalous Hall insulators,60, 61) Weyl semimet-
als,62–64) as well as topological insulators.65, 66) In these cases,
the thermal states investigated for Ising-type models are re-
placed by quantum mechanical eigenfunctions, or variations
thereof such as the local density of states (LDOS). These
have specific features in each phase but, due to the random
nature of these systems, precisely determining a phase from
an LDOS is difficult.67, 68) Recent supervised learning work
on the Anderson model of localization, capturing the fea-
tures of eigenfunctions across the delocalization–localization
transition,69) as well as further transfer-learning approaches
to the disordered Chern insulator–Anderson insulator transi-
tion,70) have shown to allow a seemingly accurate description
of phases and phase boundaries.

The power of generative machine learning has not yet been
harnessed to the same extent. This is partly because it is still a
relatively novel machine learning strategy.71) In brief, the dif-
ference to the supervised methods lies in the generative meth-
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ods being able to seemingly create novel predictions which do
not appear in any of the provided data. For example, in com-
puter vision, generative networks construct previously non-
existent high-resolution images, conditional on information
from other images.72, 73) Here, we will show how to use such
generative ML strategies to study the phases for the J1 − J2
Ising model, an extension of the Ising model that incorpo-
rates competing interactions across the diagonals of the Ising
squares and presents a more challenging 3-phase structure.
As ML generator, we shall use a so-called variational au-
toencoder (VAE), a type of neural network that reconstructs
a given predicted state after being trained on a selected set of
states.74)

The application of ML to structure determination via elec-
tron diffraction has also blossomed in the last decade.75)

ML strategies have been used to reduce the data flow in
single-molecule data classification,76) CNNs were shown to
help with phase reconstruction for convergent-beam electron
diffraction (CBED)-based scanning transmission electron mi-
croscopy (TEM)77) while molecular structure imaging was
found to benefit from such CNNs as well.78) At the core of
the deep learning (DL) methods employed in these works lie
the same supervised DL techniques as used for phase deter-
mination. Again, generative ML for electron diffraction is not
so common. Here, we will show how a so-called conditional
generative adversarial network (cGAN) can be used to make
accurate predictions of large-angle CBED (LACBED) images
from just standard crystal information as encoded, e.g., in the
usual text information79) given in the Inorganic Crystal Struc-
ture Database (ICSD),80) the world’s largest such database.

2. A brief recap of the ML approach to phases and struc-
tures

2.1 Classification and regression
ML differs from traditional programming in that it does not

rely on explicit rules to solve tasks. Instead, the network is
expected to develop a strategy based on the input dataset to
accomplish the required task. There are three primary types
of learning: supervised learning, unsupervised learning, and
reinforcement learning.71) Here, we will focus mainly on the
first two.9)

Supervised learning aims to discover the optimal strategy
for performing a task by using a labeled dataset. Within su-
pervised learning, two key tasks can be identified: classifi-
cation and regression. In classification, the ML model learns
to divide data into distinct categories. Essentially, it finds an
optimal representation of the dataset that separates samples
into different classes. In regression, the algorithms are trained
to understand the relationship between inputs and labels, en-
abling them to make continuous predictions for new, unseen
labels based on the given inputs. This sets regression apart
from classification, as it allows the model to predict values
for data not encountered during training.

The second type of learning is unsupervised learning. In
this approach, the ML algorithm processes unlabeled data and
is expected to uncover hidden patterns or correlations with-
out any external guidance. Unsupervised learning is further
divided into three categories: clustering, dimensionality re-
duction, and association learning. Clustering aims to group
similar samples within the dataset. Dimensionality reduction
seeks to simplify the data representation while retaining its es-

sential characteristics. Association learning explores relation-
ships between different samples in the dataset. Unsupervised
learning has a wide range of applications. It can be used as a
preprocessing step to reveal the structure of a dataset before
supervised learning begins.49) It also powers generative meth-
ods, such as VAEs and GANs, which create new data samples.

2.2 Generative ML: VAEs and cGANs
A VAE represents a relatively recent deep learning archi-

tecture that integrates standard compression techniques with
the regularization strategies of machine learning, functioning
simultaneously as a generative model.74, 81–83) In essence, a
VAE comprises an encoder, which is a multilayered neural
network trained on input data to generate output parameters
for a variational distribution. These parameters define a low-
dimensional probabilistic distribution, referred to as the latent
space. The decoder, another deep neural network architec-
ture, then reconstructs the output data from the latent space,
drawing samples from this space rather than selecting deter-
ministic points.

When the latent space dimensionality, d, is significantly
smaller than the information content of the input data, some
degree of information loss is inevitable. Thus, the goal is to
design the encoder and decoder in such a way that maximizes
the preservation of information during encoding while mini-
mizing the error in the reconstructed data during decoding.

To effectively train a VAE, two primary loss functions
are utilized. The reconstruction loss ℓε measures the dis-
crepancy between the input and reconstructed output dur-
ing training. Additionally, the Kullback-Leibler divergence,84)

which serves as a regularization term, ensures that the latent
space approximates a standard normal distribution.74) In prac-
tice, the training process involves minimizing a total loss ℓ,
which is a combination of the reconstruction loss ℓε and the
Kullback-Leibler loss ℓKL, such that ℓ = ℓε + cℓKL, where c is
a hyperparameter that balances the two components.74)

GANs have emerged as a highly popular architecture
for image-to-image translation tasks.82, 83) While VAEs are
known to struggle with producing high-fidelity outputs, often
resulting in blurriness,85) GANs inherently avoid this issue by
design.72) An absence of blurriness is particularly critical in
quantitative electron diffraction, where clarity is essential. For
this reason, we focus on cGANs,86) which are well-suited to
our image-to-image task involving the learning of a mapping
from an input image x and random noise vector z to a target
image y, denoted as G : x, z→ y. In this context, G represents
the generator. GANs also introduce a second component, the
discriminator, denoted as D. The discriminator is trained to
differentiate between ‘real’ images from the dataset and ‘fake’
images generated by G. This adversarial setup ensures that the
generator improves over time, as the discriminator learns to
recognize blurry images as fake, thereby driving the genera-
tor to produce sharper outputs. Unlike VAEs, which rely on a
predefined loss function, GANs instead learn a loss function
for the desired task, solving another problem: deciding which
loss function to use for comparing diffraction patterns is not
apriori clear and can vary between different applications.

3. Predicting percolating clusters with CNNs
This section reviews work done previously,52, 53) where

we showed that standard CNNs, usually employed in im-
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age recognition ML tasks, also work very well for classify-
ing site percolation states according to occupation probability
p as well as for regression when determining p from such
states. However, analyzing in detail whether spanning clus-
ters at p < pc or non-spanning clusters at p > pc are correctly
identified, we found that the same CNNs consistently fail to
reflect the ground truth. Rather, it appears that the CNNs use
p as a proxy measure to inform their classification predictions
— a strategy that is obviously false for the percolation prob-
lem.

3.1 The physics model of “percolation”
The percolation problem is well-known with a rich history

across the natural sciences.87–92) It provides the usual sta-
tistical characteristics across a second-order transition such
as, e.g., critical exponents, finite-size scaling, renormaliza-
tion and universality.88) Briefly, on a percolation lattice of size
L × L, individual lattice sites x⃗ = (x, y), x, y ∈ [1, L], are ran-
domly occupied with occupation probability p such that the
state ψ of site x⃗ is ψ(x⃗) = 1 for occupied and ψ(x⃗) = 0 for un-
occupied sites. We say that a connection between neighboring
sites exists when these are side-to-side nearest-neighbors on
the square lattice, while diagonal sites can never be connected.
A group of these connected occupied sites is called a cluster
(cf. Fig. 1(a)). Such a cluster then percolates when it spans
the whole lattice either vertically from the top of the square
to the bottom or, equivalently, horizontally from the left to the
right. Obviously, for p = 0, all sites are unoccupied and no
spanning cluster can exist while for p = 1 the spanning clus-
ter trivially extends throughout the lattice. In Fig. 1(a), we
show examples of percolation clusters generated for various
p values. The percolation threshold is at p = pc(L), such that
for p < pc(L) most clusters do not span while for p > pc(L)
there is at least one spanning cluster. This can be expressed
via the quantities P(p), Q(p) = 1− P(p) that denote the prob-
abilities of the presence or absence of the spanning cluster
at a given p, respectively (cf. Fig. 1(b)). We note that P is a
finite-L version of ψ in the notation of Ref.92) We will occa-
sionally emphasize this point using PL and, likewise, QL. For
an infinite system (L → ∞), one finds the emergence of an
infinite spanning cluster at pc = 0.59274605079210(2). This
estimate has been determined numerically evermore precisely
over the preceding decades93) while no analytical value is yet
known.92)

3.2 The ML approach to the percolation problem and the
generation of ML “data”

Several ML studies on the percolation model have been
published, mostly using supervised learning in order to iden-
tify the two phases via ML classification.49–51, 54, 55) In or-
der to facilitate the recognition of percolation with im-
age recognition tools of ML, we have generated finite-
sized L × L, with L = 100, percolation states, denoted as
ψi(p), for the 31 p-values 0.1, 0.2, . . ., 0.5, 0.55, 0.555, 0.556,
. . . , 0.655, 0.66, 0.7, . . . , 0.9. For each such p, N = 10000 dif-
ferent random ψi(p) have been generated. Each state ψi(p),
i = 1, . . . ,N, is of course just an array of numbers with 0
denoting unoccupied and 1 occupied sites. Nevertheless, we
occasionally use for convenience the term “image” to denote
ψi(p). The well-known Hoshen-Kopelman algorithm94) is em-
ployed to identify and label clusters from which we deter-

mine the presence or absence of a spanning cluster. Corre-
lation measures have also been calculated but are not shown
here for brevity.52, 53)

We emphasize that in the construction, we took care to
only fabricate states such that for each p, the number of
occupied sites is exactly Nocc = p × L2 and hence p can
be used as exact label for the supervised learning approach.
Hence p = Nocc/L2 can also be called the percolation den-
sity. For the ML results discussed below, it will also be im-
portant to note that the spacing between p values reduces
when p reaches 0.5 with the next p value given by 0.55 and
then 0.555. Similarly, the p spacing increases as 0.655, 0.66,
0.7. We will later see that this results in some deviations
from perfect classification/regression. For reference, we now
have 12 values p = 0.1, . . . , 0.58 < pc(100) and 18 values
p = 0.59, . . . , 0.9 > pc(100). We also note that the training
set contains 92.7% of states without a spanning cluster below
pc and 94.8% are spanning above pc. We have also gener-
ated similar training and test sets for L = 200; our results do
not change significantly.53) Last, all our ML results have been
obtained from ten training, validation and test cycles allowing
us to quote ML indicators, such as losses, accuracies, in terms
of averages and their errors.53) Our CNN uses the ResNet18
implementation of PyTorch.95)

3.3 Results for ML classification according to spanning or
non-spanning properties

The hallmark of the percolation transition is the existence
of a spanning cluster which determines whether the system
is percolating or not.88) We now want to check this and label
all states only according to whether they are spanning or non-
spanning, i.e., removing all density-related labels and various
possible feature leakages. From Fig. 1(b), it is immediately
clear that for finite-sized systems considered here, there are a
non-negligible number of states which appear already span-
ning even when p < pc and, vice versa, are still non-spanning
when p > pc. Furthermore, we note that for such L, the dif-
ference between pc and pc(L) is large enough to be important
and we hence use pc(L) = 0.585(5) as the appropriate value
to distinguish the two phases.

Fig. 2 shows the averaged results after ϵ = 20 with a val-
idation loss of minϵ[⟨lc,val⟩] = 0.165 ± 0.001 (corresponding
to a maximal validation accuracy maxϵ[⟨ac,val⟩] = 92.702% ±
0.001). At first glance, the figure seems to indicate a great
success: from the 31000 states present in τ, 11510.6 have
been correctly classified as non-spanning (i.e., N → N′), and
17206.9 as spanning (S → S ′) while only 1223.1 are wrongly
labeled as non-spanning (S → N′) and 1059.4 as spanning
(N → S ′) (We note that these numbers are not integers since
they are computed as averages over 10 independent training
runs53)). Overall, we would conclude that 92.6% of all test
states are correctly classified while 7.4% are wrong.

However, from the full percolation analysis for τ, we can
compute that there are 11127 states (92.7%) without a span-
ning cluster below pc(L) while 873 states (7.3%) already con-
tain a spanning cluster. Similarly, for p > pc(L), 94.9% of
states, equivalent to 17075 states, are spanning and 5.1% are
not, corresponding to 925 states. At pc(L) = 0.585, we fur-
thermore have 482 spanning and 518 non-spanning states.
Hence in total, we expect 2280 wrongly classified states.
Since the last number is very close to the actual number of
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Fig. 1. (Color online) (a) Examples of four percolation clusters of size L2 = 1002, obtained for p = 0.2 < pc, p = 0.6 > pc in the top row and p = 0.5, i.e.,
just below pc, in the bottom row. Occupied sites are marked by small dots while empty sites are left white. Each cluster of connected sites has been identified
through the Hoshen-Kopelman algorithm. While individual clusters have been highlighted with different gray scales for the first three images, the bottom right
image with p = 0.5 shows all occupied sites in black only, irrespective of cluster identity. This latter representation is used below for the ML approach. (b) The
square (□) symbols (◦ symbols) show the probability to have a spanning, P(p) (non-spanning Q(p)) sample in the training dataset. The cross (×) symbols (+
symbols) denote the corresponding ML prediction for the probability to have a spanning (non-spanning) sample, according to the trained network. The lines
connecting the symbols are only a guide to the eye. The vertical lines indicate the percolation thresholds as given in the legend. (c) Average confusion matrix
for classification according to p. The dataset used is the test data τ and the models used for predictions are those corresponding to a minimal lc,val. True labels
for p are indicated on the horizontal axis while the predicted labels are given on the vertical axis. The shading scale represents the number of samples in each
matrix entry.
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Fig. 2. (Color online) (a) Average confusion matrix for classification ac-
cording to spanning/non-spanning. The dataset used is the test data τ and the
models used for predictions are those corresponding to a minimal lr,val. The
true labels for N and S , are indicated on the horizontal axis while the pre-
dicted labels are given on the vertical axis. (b) Dependence of losses lc,train
and lc,val, averaged over ten independent training seeds, on the number of
epochs ϵ for classification according to spanning/non-spanning. The circles
(solid •) denote lc,train while the squares (open □) show lc,val. The crosses (×)
indicate the minimal lc,val for each of the ten trainings.

2282.5 of misclassified states, this suggests that it is precisely
the spanning states below pc(L) and the non-spanning ones
above pc(L) which the DL network is unable to recognize.
Let us rephrase for clarity: the CNN, when trained in whether
a cluster is spanning or non-spanning, completely disregards
this information in its classification outputs. We show that this
is indeed the case by a detailed analysis of the clusters around
pc,53) a bespoke training just at fixed pc

96) and also using test
sets which have been constructed to allow testing for the ex-
istence of the spanning cluster.53)

In summary, when looking at p, classification and regres-
sion techniques for percolation states allow us to obtain good
recognition with near-perfect ⟨ac,val⟩ = 99.323% ± 0.003)
for classification (cf. also Fig. 1(c)) and near-zero ⟨lr,val⟩ =

0.000062 ± 0.000012 average mean-square loss for regres-
sion.52) On the other hand, the DL network completely ig-
nores whether a cluster is spanning or non-spanning, essen-
tially missing the underlying physics of the percolation prob-

lem — it seems to still use p as its main ordering measure. We
believe that the root cause of the failure to identify the span-
ning clusters, or their absence, lies in the fundamentally local
nature of the CNN: the filter/kernels employed in the ResNets
span a few local sites only. Hence it is not entirely surpris-
ing that such a CNN cannot correctly identify the essentially
global nature of spanning clusters. But it is of course exactly
this global percolation that leads to the phase transition. This
should serve as a warning to enthusiastic proponents of the
ML approach not to ignore the physics undeservedly.

4. Resolving disorder strengths from images of the 3D
Anderson model

One of the hardest challenges in modern eigenvalue com-
putation is the numerical solution of large-scale eigenvalue
problems, in particular those arising from quantum physics.97)

Typically, these problems require the computation of some
eigenvalues and eigenvectors for systems which have up to
several million unknowns due to their high spatial dimen-
sions. Here, the Anderson model of localization98) is a par-
ticularly paradigmatic model as its underlying structure in-
volves random perturbations of matrix elements which inval-
idates simple preconditioning approaches based on the graph
of the matrices.99) Its physical importance comes from the
prediction of a spatial confinement of the electronic motion
upon increasing the disorder – the so-called Anderson local-
ization.100) When the model is used in three spatial dimen-
sions, it exhibits a metal-insulator transition in which the dis-
order strength w mediates a change of transport properties
from metallic behavior at small w via critical behavior at the
transition wc ∼ 16.57 to insulating behavior and strong local-
ization at larger w > wc.101) The 3D Anderson model hence
provides us with a physically meaningful quantum problem
in which to use ML strategies to distinguish its two phases,
namely the metallic phase with extended states at w < wc and
the insulating phase with localized states at w > wc (Occa-
sionally, one might want to also study w ≈ wc as a 3rd phase),
while avoiding the many challenges of fully interacting quan-
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(a) (b) (c)

Fig. 3. (Color online) Extended (left), critical (center) and localized (right) wave function probabilities |ψ(⃗r)|2 for the 3D Anderson model with periodic
boundary conditions at E = 0 with N = 1003 and w = 14, 16.5 and 19, respectively. Every site with probability |ψ(x, y, z)|2 larger than the average 1/N3 is
shown as a box with volume N|ψE=0(x, y, z)|2. Boxes with N |ψ(x, y, z)|2 >

√
1000 are plotted with black edges. The shading of each cube distinguishes between

different slices of the system along the axis into the page. In each panel, the left half is the originally constructed image while the right half shows the image
in its converted PNG form with 500 × 500 pixel resolution. Obviously, upon conversion, the black edges around the large |ψ(x, y, z)|2 become less prominent
and the overall black frames are also removed.

tum systems.102) In this sense, it can be seen as the quantum
ML test partner to complement the classical statistical physics
tests available via the percolation and Ising-type models. Sim-
ilarly to the percolation model, previous ML studies have al-
ready been performed and showed good success for ML clas-
sification with CNNs to identify the two phases of the sys-
tem.69, 70, 103, 104) Here, we show that not only phases but also
disorder strengths can be recovered from eigenstates of the
3D Anderson model.

4.1 The formulation of the Anderson model in 3D
In its usual form, the localization problem in 3D with coor-

dinates x, y, z corresponds, in the absence of a magnetic field,
to a Hamilton operator in the form of a real symmetric ma-
trix H, with quantum mechanical energy levels given by the
eigenvalues En. The respective wave functions are simply the
eigenvectors of H, i.e., vectors ψn (⃗r) ∈ C for r⃗ = (x, y, z).
With N = M3 sites, the quantum mechanical (stationary)
Schrödinger equation is equivalent to the eigenvalue equation
Hψn = Enψn, which in site representation reads as∑

σ=±

ψn (⃗r + σa⃗) + ψn (⃗r + σb⃗) + ψn (⃗r + σc⃗)

=
[
En − ε(⃗r)

]
ψn (⃗r), (1)

with a⃗ = (1, 0, 0), b⃗ = (0, 1, 0) and c⃗ = (0, 0, 1) denoting the
lattice vectors of a periodic, simple cubic lattice. The disor-
der usually105) enters the matrix on the diagonal, where the
entries εn (⃗r) correspond to a spatially varying disorder po-
tential and are selected randomly according to a suitable dis-
tribution.97) Here, we shall use the standard box distribution
ε(⃗r) ∈ [−w/2,w/2] such that w parameterizes the aforemen-
tioned disorder strength. For disorders w ≪ wc, most of the
eigenvectors are extended, i.e., ψn (⃗r) fluctuating from site to
site, but the envelope |ψn| is approximately a nonzero constant.
For large disorders w > wc, all eigenvectors are localized such
that the envelope |ψn| of the nth eigenstate may be approxi-
mately written as ∼ exp

[
−|⃗r − r⃗n|/ξ(w)

]
with ξ(w) denoting

the localization length of the eigenstate. Directly at w = wc,
the last extended states at E = 0 vanish. The wave function
vector ψE=0 (⃗r) appears simultaneously extended and localized

and has multifractal properties.67, 68) In Fig. 3, we show exam-
ples of such states.

In order to numerically distinguish the two (or three) phases
mentioned before, one usually needs to (i) go to rather large
system sizes of order N = 106 to 108 and (ii) average
over many different realizations of the disorder, i.e., compute
eigenvalues or eigenvectors for many matrices with differ-
ent diagonals.67, 68, 100, 101) In the present work, we concentrate
on the computation of a few eigenvalues and corresponding
eigenvectors for the physically most interesting case around
the critical disorder wc and in the center of the spectrumσ(H),
i.e., at E = 0, for large system sizes.

4.2 Hamiltonian eigenfunctions as data
The square-normalized eigenstates ψn =∑
x,y,z ψn(x, y, z)|x, y, z⟩ have been numerically obtained using

the Jadamilu library.106) The |x, y, z⟩ indicate the orthonormal
Wannier basis in the usual tight-binding formulation. For the
17 disorders w = 15, 15.25, . . . , 16, 16.2, . . . , 17, 17.25, . . . 18
we consider for training and validation a previously used
dataset67, 68) with 5000 disorder realization for each disorder
and system sizes N = 203, 303, . . . , 1003. For all the data,67, 68)

we have considered a single eigenstate per sample (disorder
realization) with energy close to E = 0. This is costly in
terms of computing time but essential to avoid the noticable
correlations that exist between eigenstates of the same
sample.67, 68) In addition, we have generated, for each of the
disorders, 500 independent test wave functions at E = 0, i.e.,
using random numbers with different seeds.

In order to be able to use standard 2D image recognition
machine learning tools, we represent the ψn graphically as
in Fig. 3. We remove the black box and the color scale be-
fore using the images for training, validation and testing pur-
poses. Furthermore, the images are converted from their origi-
nal postscript, using the ImageMagick set of routines, and ren-
dered as portable network graphics (PNG) in the pixel reso-
lutions of s = 100 × 100, 200 × 200 and 500 × 500. This
conversion results in some changes in the visual presentation
as shown in Fig. 3.
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Fig. 4. (Color online) (a) Average confusion matrix for image classification of the 17 disorders w = 15, 15.25, . . ., 16, 16.2, . . ., 17, 17.25, . . . 18 for system
size N = 1003 and image resolution 100 × 100. The dataset used is the test data τ and the models used for predictions are those corresponding with a minimal
lc,val. (b) Dependence of losses lc,train and lc,val on the number of epochs ϵ for disorder classification and the three system sizes N = 203, 403 and 1003 (a).
The squares (open □) denote lc,train while the circles (solid •) show lc,val. (c) Epoch dependence of lc,train and lc,val for N = 1003 and two image resolutions,
200 × 200 and 500 × 500. Symbols are as in (b), s indicates the size of the images.

4.3 ML models and results
Previous ML studies of the Anderson model use CNNs

composed of 6 convolutional layers and a fully connected
layer to identify the extended and localized phases from the
|ψ(x, y, z)|2.69, 70, 104) Here, our goal is to expand on these re-
sults and show that a ResNet18, as used in section 3, can also
recover the value of w used in images made from these |ψ|2.

We first establish the capacity of the ResNet18 to iden-
tify the two phases of the 3D Anderson model of localization
from images (not shown here). Here, we want to train a net-
work to identify individual disorder values. Following a sim-
ilar strategy as in section 3, we train our network for 17 dis-
order values w = 15, 15.25, . . . , 16, 16.2, . . . , 17, 17.25, . . . 18
for fixed N = 203, 403, 1003 and s = 1002. After train-
ing the 17 disorder values for N = 203, we obtain a
minϵ[⟨lc,val⟩] = 2.408 ± 0.003 (corresponding to an accuracy
of maxϵ[⟨ac,val⟩] = 15.9% ± 0.2). At first, the performance of
the network on this system appears to be rather limited. From
the confusion matrix obtained after training (not shown), we
notice that only the smallest and largest disorders, i.e., w = 15
and w = 18, are perfectly classified. We increase the size of
the system and train our network for N = 403. Following the
training we reach minϵ[⟨lc,val⟩] = 1.951 ± 0.004 (correspond-
ing to an accuracy of maxϵ[⟨ac,val⟩] = 25.7% ± 0.2). Looking
at the metrics in Fig. 4 (b), we notice the decrease of ⟨lc,val⟩

and ⟨lc,val⟩ between the training for N = 203 and N = 403.
Still, the apparent improvement in the performance of the net-
work is not yet convincing. We finally train for N = 1003 and
s = 100 × 100. We obtain minϵ[⟨lc,val⟩] = 1.327 ± 0.006 (cor-
responding to an accuracy of maxϵ[⟨ac,val⟩] = 43.3% ± 0.3).
This is an increase of almost 18%. Even though the accuracy
is still less than 50%, the network seems to be getting better
at recognizing the w values. The confusion matrix obtained
after this training is given in Fig. 4(a). Clearly, the matrix
is heavily diagonally dominant: misclassifications appear to
exist mostly between directly adjacent disorder values. Thus,
while the training does not result in a perfect recognition of
w’s, it is nevertheless already very good in recognizing the
vicinity of each w, even very close to the metal-insulator tran-
sition. Increasing the size of the input images to s = 200×200
does not help to provide significant improvement. After train-

ing we obtain minϵ[⟨lc,val⟩] = 1.216 ± 0.003 (corresponding
to an accuracy of maxϵ[⟨ac,val⟩] = 47.9%± 0.2). Furthermore,
training for such a large input leads to a substantial increase
in training time.

In summary, we find that even using images of eigenstates
allows to distinguish the phase of the 3D Anderson model
well, while the classification of w values proceeds with nearly
the same accuracy as in the case of classifying p for perco-
lation in section 3. Furthermore, increasing the system size
from N = 203 to 1003 improves the predictions considerably.
Such finite-size effects remind us rather reassuringly that the
ML strategies are obviously subject to the same physics con-
straints as standard approaches.

5. Predicting phases of the J1-J2 Ising model with VAEs
The J1-J2 Ising model serves as a still relatively simple

system to illustrate an already more complex 3-phase be-
havior.107–118) With J1 denoting the nearest-neighbor interac-
tion, the competing second-neighbor interaction J2 gradually
suppresses the ordering temperature, until it vanishes com-
pletely when J2 = |J1|/2.107, 108) Furthermore, beyond this
point, a new ordered “superantiferromagnetic phase” appears.
The universality class of the transition into the superantiferro-
magnetic phase has been investigated early on,107–109) but still
continues to attract attention since its nature remains contro-
versial.116–118) There is at least also one investigation of this
model on the D-wave quantum annealer119) and a small num-
ber of machine-learning investigations.28, 38)

5.1 Definition of the J1-J2 Ising model
The Hamiltonian of the J1-J2 Ising model can be expressed

as

HJ1 J2 = −J1

∑
⟨i, j⟩

si s j + J2

∑
⟨⟨i, j⟩⟩

si s j , (2)

where si represents the spin at site i, which can be either
up (+1) or down (−1); ⟨i, j⟩ refers to nearest-neighbor pairs,
⟨⟨i, j⟩⟩ denotes next-nearest neighbor pairs, while J1, J2 ≥ 0
signify the interaction strengths between the nearest and next-
nearest neighbors, respectively. Our chosen sign conventions
in Eq. (2) lead to a ferromagnetic coupling for J1 pairs while
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Fig. 5. (a-e) Five illustrative spin configurations of the J1-J2 Ising model on a periodic 30 × 30 square lattice. (f-k) Predicted spin configurations from
(a-e), respectively, using our VAE learning. Panels (a, b, c) keep J2 = 0.1 fixed while increasing T from (a) ferromagnetic at T = 0.1 to (b) T = 1.975
near the ferromagnetic-to-paramagnetic transition and (c) a configuration deep in the paramagnetic phase at T = 4.0. Panels (d, e) have J2 = 0.8 and then
decrease T from (d) T = 1.575 near the paramagnetic-to-superantiferromagnetic transition to (e) a superantiferromagnetic configuration at T = 0.1. In (f-k),
the parameters are as in (a-e). In all cases, the black squares correspond to up spins while white is for down spins. In (f-k), the values in the interval [−1, 1] are
denoted by the gray squares in the panels.

next-nearest neighbors prefer to align in an antiferromagnetic
structure.120) The three distinct phases of the model corre-
spond to (i) a low-temperature, low-J2 ferromagnet, (ii) a
low-temperature, high-J2 superantiferromagnet and (iii) the
high-temperature paramagnet. We illustrate spin configura-
tions representative of these phases and close-to-phase transi-
tions in Fig. 5. In this work, we review recent work aiming to
predict the three phases with a generative VAE, using a spin-
adapted mean-squared error ε as ML cost function.120)

5.2 Generating states as ML training data via the Metropo-
lis Monte-Carlo approach

To generate the necessary input data for the training of the
VAE, we utilize the Metropolis algorithm, a well-established
method for simulating statistical models at finite tempera-
ture.121–124) In the present investigation, we initially focus
on a system size of 30 × 30 with periodic boundary condi-
tions.28, 125) In order to assess the influence of the size of the
system, we also investigate 60 × 60 and 120 × 120 square lat-
tices. Equilibration of the model can be difficult, in particular
in the regime of J2 ≈ |J1| /2.115) We assure proper thermal-
ization by successively cooling our configurations for fixed
J2/ |J1|.120) We set the energy scale with J1 = 1.

For J2 = 0, we are back to the nearest-neighbor Ising
model with known critical temperature Tc,Ising ≈ 2.269.126)

We can therefore confidently start our exploration of the as-
yet unknown phase diagram by choosing an initial tempera-
ture range of 0 ≤ T ≤ 4 ≈ 2 × Tc,Ising containing Tc,Ising. We
also know that the ferromagnetic-to-superantiferromagnetic
transition is at J2 = 1/2.115) Hence we choose a range for
J2 from 0 to 1.5. Should we later see that these ranges do
not suffice to capture all phases, we could further increase the
maximal T and J2 values. Using ∆T = 0.025, we thus proceed
with a set T of |T | = 157 temperatures with T ∈ [0.1, 4] for
T ∈ T . The Monte-Carlo construction is repeated with differ-
ent random numbers until we have C = 40 configurations for
each temperature at the given values of J2. Let J2 = {0, 0.1,
0.2, 0.3, 0.4, 0.45, 0.48, 0.49, 0.495, 0.5, 0.505, 0.51, 0.52,
0.55, 0.6, 0.65, 0.7, 0.8, 0.9, 1, 1.2, 1.5} denote the |J2| = 22
chosen distinct values. In total, this results in a dataset con-
taining |T | × |J2| ×C = 157× 22× 40 = 138 160 independent

configurations for a given system size.

5.3 Reconstruction of the phase diagram using single-
region VAEs

We can now use the VAE architecture to identify the phases
of the J1-J2 model as a function of T and J2 for constant
J1 = 1. Details of the VAE implementation can be found else-
where.120) We start the training of the VAE for T ≪ Tc,Ising in
two distinct regions, namely (i) J2 < 1/2 and (ii) J2 > 1/2.
Consequently, we have two restricted training data regions
ρlow-J2 and ρhigh-J2 . In order to have a reasonable amount
of training data, we use all 40 values for each (T, J2) in
each training region. For the results underlying Fig. 6(a), this
amounts to 1440 training configurations in ρlow-J2 , while for
Fig. 6(b), we have 1800 configurations in ρhigh-J2 .

From Fig. 6 we see that indeed two distinct regions emerge.
The low-T , low-J2 region shown in (a) is clearly separated
from the rest of the (T, J2) plane. Similarly, panel (b) estab-
lishes a low-T , high-J2 region. We note that in both cases, the
ε values in the low/high-J2 regions are close to zero, while
in the other regions we have ε ≈ 0.5. This value suggests
that in both cases, the out-of-region configurations have about
50% of spins different, in agreement with the behavior in the
known phases. We can therefore conclude the existence of two
low-T regions identified in Fig. 6. By exclusion, the third re-
gion corresponds to ε ≈ 0.5 from both trainings.

Indeed, these regions agree very well with the previously
established phase boundaries shown in Fig. 6. The ε values of
0, 0.25, and 0.5 indicate best, random, and worst reconstruc-
tion possible, respectively, compatible with the spin configu-
rations in each phase. Clearly, the regions with ε ≈ 0 corre-
spond to the ordered ferro- and superantiferromagnetic phases
in Fig. 6 (a) and (b), respectively. Further results with similar
ML strategies as well as on a direct comparison of states can
be found elsewhere.120)

6. Microscopy with GANs
CBED127, 128) is a TEM technique with unparalleled sen-

sitivity.129) Its origins date back nearly 100 years to pio-
neering work130) and its modern applications include crys-
tal symmetry classification,131–133) lattice parameter determi-
nation,134–136) strain & defect analysis,137–140) and more.141)
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Fig. 6. (Color online) Minimal averaged error ε for the VAE-based reconstruction of the J1-J2 model’s phase diagram. The results correspond to L = 30.
Panel (a) represents the in-phase learning from the low-J2 region ρlow-J2 and (b) gives results for the in-phase learning from the high-J2 region ρhigh-J2 . The
(T, J2) data points of various training regions are indicated by small white dots for each (T, J2) pair (usually these are closely spaced and hence appear as
vertical lines). In all panels, ◦ symbols connected by black lines denote known reference phase boundaries.115)

However, CBED sees the majority of its use in symmetry
determination131) and charge density refinement142) and is
still lacking in popularity when compared to the more es-
tablished structure solution and refinement methods of X-
ray and neutron diffraction.143, 144) Collecting the necessary
amount of high-quality diffraction data from a TEM, to con-
struct a LACBED image, is one of the inherent challenges
of the method. Here, modern computer-controlled TEM se-
tups offer a clear advantage and can make the task near
automatic.129) A perhaps even more constraining challenge
lies in the fact that the complexity introduced by multiple
scattering of electrons as they propagate through the speci-
men127) requires sophisticated modelling techniques to con-
struct the theoretical predictions to compare with TEM re-
sults. To make CBED a more accessible approach, there
have been two major computational methods developed: (i)
the Bloch-wave method,127, 144–146) and (ii) Multislice.146–151)

Whilst both have seen success in accurately generating CBED
patterns, they even today remain computationally resource-
and time-intensive, often well beyond what a standard desk-
top computer can provide.152)

6.1 Selection of training data
For our aim to generate LACBED patterns via ML, we

require a large body of data in which crystal structure in-
formation has been paired with corresponding bright field
LACBED images. Experience from previous such machine
learning tasks in computer vision71, 153) and related applica-
tions,52, 53, 69, 70, 125) as well as in the previous sections, sug-
gests that often more than 10, 000 such training pairs are
needed. On the scale necessary for a successful model, it is
infeasible to use experimental data for such patterns. Fortu-
nately, the ICSD,80) as the world’s largest such database, pro-
vides ready access to the full structural information for more

than 240, 000 crystals in the form of a ‘Crystallographic In-
formation File’ (CIF), a standard text file format.79)

Direct training with structured textual data, as available
in the CIFs, is still a major challenge for machine learning
tasks.154, 155) Even small changes in, e.g., numerical values of
the lattice parameters, can have major changes in the resulting
CBED patterns. On the other hand, existing image-to-image
translation tasks have been primarily optimized for 2D data.
To harness this knowledge, we need a feasible way to repre-
sent the CIF information in 2D image form as well. Fortu-
nately, the projected atomic potential ρ is a convenient such
image representation. Using the structure factors F(g) of the
crystal, obtained from Felix,152) we generate the projected po-
tential as ρ(r) ∝

∑
g F(g) · exp[−2πig · r]. Here, the g are the

lattice vectors of the unit cell in reciprocal space. We normal-
ize the resulting image of atomic potential strength and also
restrict their size to 128 × 128. Note that in requiring all of
these inputs to be the same image dimensions for the machine
learning model, we lose information regarding the size of the
crystal.

Next, we need a method to construct the LACBED patterns
corresponding to each CIF and projected electron potential ρ.
We employ Felix, an open-source software implementation of
the Bloch-wave method145, 146) for generating LACBED im-
ages originally developed in part by one of us.152) Felix has
been shown to provide atomic coordinate refinements with
sub-picometer accuracy,143, 144) and can accurately simulate
LACBED patterns.129) The software takes as input a CIF,
beam parameters, microscope settings, crystal settings, and
the desired beam direction. Most of these values were cali-
brated previously.143) In our simulations, we only consider the
(0, 0, 0) beam direction for simplicity. The other simulation
parameters used here are provided in the code accompany-
ing the present work.156) We use Felix to generate LACBED
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Fig. 7. (Color online) The distribution of crystal structure data entries from the 10 accumulated test sets in each of the 36 (+4 from alternative origin choices)
cubic space groups as obtained from the ICSD. The shading scale denotes the cross-correlation index R, see (3), obtained for each structure in the indicated
space group using the trained cGAN, sorted from overall highest (top) to overall lowest (bottom) R. We note that the vertical scale above 1000 has been
compressed for clarity. The LACBED images shown on the top correspond to different R values to give a more intuitive interpretation (using the same intensity
scale as in Fig. 8).

images of size 128 × 128. Such sizes are sufficient for many
computer-vision-based machine learning tasks,71) whilst re-
maining small enough to allow the generation of results on a
large scale for our dataset.

Our strategy in generating the necessary input from the in-
formation provided in the ICSD is then as follows: (i) We con-
vert the textual information provided by each crystal’s CIF
into the normalized projected electronic potential, i.e., a 2D
image. (ii) we compute, via the Bloch-wave code Felix, the
corresponding bright-field LACBED images. While the con-
struction of the electron potential images is very fast, gen-
erating the LACBED dataset takes a few weeks using be-
spoke high-performance computing architecture. In the cur-
rent proof-of-principle work, we focus on the 12454 CIFs
each corresponding to a unique cubic crystal. We ultimately
have a dataset of 12454 image pairs of size 128 × 128,
with pixel values between 0 and 255. Each pair consists
of a crystal’s projected electron potential and its simulated
(0, 0, 0) LACBED diffraction pattern. This dataset is publicly
hosted.157)

Whilst we use as many cubic crystals as we can, since after
all, a much higher number is still desired, we encounter sig-
nificantly imbalanced data in many areas. For example, when
resolved according to their space group classification, we find
that the ICSD data is highly imbalanced. As shown in Fig. 7,
some space groups contain less than 10 ICSD entries while
others have many thousands. It is well known that machine
learning methods, and in particular our chosen adversarial
network architecture, suffer in their predictive strength when
using imbalanced data.158) Hence it could be worthwhile in
future studies to include other crystal data from the ICSD be-
yond the cubic ones.

6.2 Results
We train a cGAN to create LACBED patterns by provid-

ing the projected electron density as input. We repeat each
training 10 times and use a fresh 80%/20% split of our data
into training/test data sets for each such learning cycle, re-
spectively.156) The images given in Fig. 8 show a comparison
between typical LACBED predictions of the cGAN and the
expected behavior from the Felix results. Before going into
details on how we create these images, we start by noting
that the ground truth LACBED images shown in the figure,
with whom we compare our predictions, needed about 400
seconds each to be constructed by the Bloch-wave method
on a high-performance compute cluster while our predicted
LACBED images arrived within 20 milliseconds on a mod-
ern, i.e., GPU-supported, desktop.

In Fig. 8, we find an overall good qualitative agreement,
in particular w.r.t. the underlying two-fold symmetries. While
we use the standard mean-squared error in training the cGAN,
we report a shifted zero-mean normalized cross-correlation fit
index R for pixel intensities,

R(y, ŷ) =
1
2
+

1
2n2

n∑
i, j

yi j − ⟨y⟩
σ(y)

·
ŷi j − ⟨ŷ⟩
σ(ŷ)

, (3)

which has often been used in CBED image comparison stud-
ies.129) Here, yi j and ŷi j are the pixel intensities at (i, j),
i, j = 1, . . . , n, for a cGAN-predicted and Felix-simulated im-
age, respectively, while the ⟨·⟩ denotes mean intensities and
σ their standard deviation. In this normalization, the value
R = 1 corresponds to a perfect fit, while R = 0 is perfectly
anti-correlated. The values R = 0.5 and 0.75 emerge when
1/2 or 3/4 of the image pixels are correlated and 1/2 and 1/4
are anti-correlated, respectively. Also, R = 0.5 corresponds to
two images with uncorrelated intensities. In Fig. 8 we show
two typical results, namely example crystals with R values
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Fig. 8. (Color online) Comparison of (left column) ML-predicted
LACBED patterns for the [001] projected electron potential of a unit cell
with (right column) the Felix Bloch-wave simulation (“ground truth”). The
cross-correlation fit index R, cf. Eq. (3), for the complete test data set has a
mean of R = 0.934±0.011 and median of 0.990±0.002. The two unseen crys-
tals displayed here have been selected as typical examples from the test data
set. In the top row, we show USnNi4(54390), from space group F4̄3m. Its R
value is close to the mean. In the bottom row, we display β−Mn (163414)
from P4132 with an R value close to the median. Computation of each sim-
ulated image via Felix takes about 400 seconds with 48 CPU cores whilst
the ML result is generated in under 20 milliseconds on a standard desktop
PC+GPU. All images are 128 × 128 pixels, have normalized amplitudes and
use the same shading scale as indicated at the top of the image.

close to the mean and median values of R obtained for the full
test data set. Our resulting typical R values for the LACBED
image reconstruction, as given in the caption of Fig. 8, and
the colored bars in Fig. 7, indicate an overall very good quan-
titative agreement.

7. Conclusions and Outlook
The learning aspects of DL networks are often referred to as

“black boxes”, highlighting that it appears occasionally sur-
prising how a DNN arrives at its classification, regression or
generative predictions. On the other hand, it is exactly this
lack of apriori imposed basic descriptors that allows a DL
architecture to variationally construct its own set of descrip-
tors to achieve an optimal prediction. So when ML succeeds
in classifying states of Ising-type, percolation, and Anderson
models, this also shows that the phase information must be
encapsulated directly in the states alone, even for those rel-
atively close to the phase boundaries as shown by the over-
all good reconstruction of these phases. While this was not
unknown before or unexpected,67, 68, 101, 159) it is nevertheless
an interesting qualitative insight to have re-emphasized. Con-
versely, this also suggests that simply comparing states with

each other, by mean-squared deviations, R correlation or oth-
erwise, might also be an alternative quantitative method for
phase diagram construction - as already demonstrated.120)

The caveat discovered when studying the globally span-
ning cluster for the percolation problem with locally focused
CNNs, i.e., the failure of such CNNs to correctly identify
the percolating cluster,53) furthermore suggests that even the
power of modern ML approaches can fail when the underly-
ing physics is ignored.102) In this context it is also important to
mention that the cGAN predictions for the outcome of elec-
tron interference experiments, i.e., the LACBED intensities,
do not somehow circumvent the quantum mechanical mea-
surement problem. Rather, they simply provide a good inter-
polation to the various diffraction solutions of the electron dy-
namical scattering problem provided by the Bloch wave cal-
culations the cGAN was trained on.

Last, the review given here clearly reflects the prejudices
and preferences of its authors in selecting the applications of
ML to physics. Many other applications and application areas
have been ignored such as Boltzmann machines9) and the ex-
tremely interesting approaches to finding states of many-body
systems.160–164)
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ing this, she obtained a Master’s degree from CY Cergy Paris Université
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Burak Çivitcioğlu was born in Antalya, Türkiye. After a first degree at
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publishing initiatives such as SciPost Physics as editor.
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59) J. Oswald and R. A. Römer, “Microscopic details of stripes and bub-
bles in the quantum Hall regime,” Phys. Rev. B 102 no. 12, (9, 2020)
121305(R).

60) F. D. Haldane, “Model for a Quantum Hall Effect without Landau Lev-
els: Condensed-Matter Realization of the ”Parity Anomaly”,” Phys.
Rev. Lett. 61 no. 18, (10, 1988) 2015.

61) R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang,
“Quantized anomalous Hall effect in magnetic topological insulators,”
Science 329 no. 5987, (7, 2010) 61–64.

62) J. Pixley, P. Goswami, and S. Das Sarma, “Anderson Localization and
the Quantum Phase Diagram of Three Dimensional Disordered Dirac
Semimetals,” Phys. Rev. Lett. 115 no. 7, (2015) 076601.

63) L. Meng, J. Wu, J. Zhong, and R. A. Römer, “A type of robust super-
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“The Anderson Model of Localization: A Challenge for Modern
Eigenvalue Methods,” SIAM Journal on Scientific Computing 20 no. 6,
(1, 1999) 2089–2102.

100) T. Brandes and S. Kettemann, Anderson Localization and Its Ramifi-
cations, vol. 630 of Lecture Notes in Physics. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2003. http://link.springer.com/10.
1007/b13139.

101) F. Evers and A. D. Mirlin, “Anderson transitions,” Rev. Mod. Phys. 80
no. 4, (2008) 1355–1417. http://link.aps.org/doi/10.1103/
RevModPhys.80.1355.
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