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Abstract

We show that quantum Casimir W-algebras truncate at degenerate values of the central
charge c to a smaller algebra if the rank is high enough: Choosing a suitable parametriza-
tion of the central charge in terms of the rank of the underlying simple Lie algebra, the
field content does not change with the rank of the Casimir algebra any more. This leads
to identifications between the Casimir algebras themselves but also gives rise to new, ‘uni-
fying’ W-algebras. For example, the kth unitary minimal model of WAn has a unifying
W-algebra of type W(2, 3, . . . , k2 + 3k + 1). These unifying W-algebras are non-freely
generated on the quantum level and belong to a recently discovered class of W-algebras
with infinitely, non-freely generated classical counterparts. Some of the identifications are
indicated by level-rank-duality leading to a coset realization of these unifying W-algebras.
Other unifying W-algebras are new, including e.g. algebras of type WD−n. We point out
that all unifying quantum W-algebras are finitely, but non-freely generated.

to appear in Phys. Lett. B



0. Introduction

Quantum W-algebras play a fundamental rôle in two dimensional conformal field theory
(for a recent review see e.g. [1]). In this letter we shall focus on the so-called ‘generic’
(or ‘deformable’) W-algebras where the structure constants are continuous functions (with
isolated singularities) of the Virasoro centre c for a given set of generating fields. There
is also the class of ‘non-deformable’ W-algebras that exist only for finitely many isolated
values of the central charge c. Non-deformable W-algebras with few generators and their
representations have been extensively studied in [2− 6]. On the basis of these results it is
now generally believed that non-deformable W-algebras can be regarded as extensions or
truncations of deformable ones 1) – with known exceptions [7, 8].

The finitely generated generic quantum W-algebras fall at least into two classes. The
class that consists of freely generated W-algebras is already quite well understood. There
are indications [9 − 11] that all algebras in this class can be obtained by quantized [12]
Drinfeld-Sokolov reduction (see e.g. [10] and references therein). In particular, quantized
Drinfeld-Sokolov reduction for a principal sl(2) embedding into a simple Lie algebra Ln of
rank n leads to the so-called ‘Casimir algebras’ [13] which we denote by ‘WLn’ (we will
also call n the ‘rank of WLn’). Note that the classical counterparts of the W-algebras in
this class are finitely, freely generated.

It was recently shown in [14] that there is another class of W-algebras with infinitely,

non-freely generated classical counterparts. Due to cancellations between generators and
relations upon normal ordering, the quantized versions of these W-algebras become finitely,
non-freely generated in all known examples. This class of W-algebras contains –among
others– orbifolds and cosets 2). Two unexpected examples of finitely, but non-freely gen-
erated quantum W-algebras had been found earlier: Particular extensions of the Virasoro
algebra with additional fields of conformal dimensions 4, 6 [2] and 3, 4, 5 [15], respectively.
In particular, the origin of the former one (which we denote by ‘W(2, 4, 6)’) was mysterious
for some time [6] although it was proposed in [16] to identify this algebra formally with
‘WD−1’. In [14, 17] these W(2, 4, 6) and W(2, 3, 4, 5) were explained in terms of the cosets
̂sl(2, IR)k ⊕ ̂sl(2, IR)− 1

2
/ ̂sl(2, IR)k− 1

2
and ̂sl(2, IR)k/Û(1).

In this letter we will show that this second class contains ‘unifying W-algebras’ which
interpolate the rank n of Casimir algebras WLn at particular values of the central charge.
For example, the W(2, 3, 4, 5) unifies the first unitary minimal models of WAn−1 whereas
the W(2, 4, 6) corresponds to certain minimal models of WCn. Using the coset realization
of these algebras, the unifying W-algebras can be regarded as a generalization of level-rank-
duality [18, 19]. These identifications between a priori different W-algebras for particular
values of the central charge c are closely related to the fact that for certain values of
the central charge c some generators become null fields leading to a ‘truncation’ of the

1) Note that in [6] there is a misleading remark on this question because it was not
recognized that W(2, 8) at c = −712

7 and c = −3164
23 arises as a truncation of WE8 and

WE7 respectively.
2) On the classical level all cosets belong to this class. However, particular quantum

coset constructions (e.g. of Casimir algebras) yield finitely, freely generated W-algebras.
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W-algebra. We will further show from inspection of the Kac determinant for Casimir W-
algebras that truncations of them are in fact a very general phenomenon. These truncations
of Casimir W-algebras imply truncations of the various linear W∞-algebras to a finitely
generated algebra which can indeed be verified.

Unifying W-algebras

We introduce the notion of ‘unifying W-algebras’ before establishing their existence. A
unifying W-algebra is a finitely generated deformable quantum W-algebra (i.e. existing for
generic c) with the following properties:

• There exists an integer n0 and simple Lie algebras Ln such that for all n ≥ n0 and
c = cLn

(p(n), q(n)) it is isomorphic to the Casimir algebra WLn.
• Ln is either of type A, B, C or D independent of n.

This implies that for all n > n0 the Casimir algebras WLn at central charge cLn
(p(n), q(n))

truncate to the unifying W-algebra whose spin content is independent of n.

Since unifying W-algebras exist for generic c, they can be considered as continuations
to real values of the rank n of Casimir algebras WLn at cLn

(p(n), q(n)). Some Casimir
algebras play the rôle of unifying W-algebras. In contrast to them, the ‘true’ unifying W-
algebras are non-freely generated and belong to the second class of quantum W-algebras.

1. Truncations and identifications from structure constants

The first unitary minimal model of WAk−1 has the symmetry algebra W(2, 3, 4, 5) ∼=
̂sl(2, IR)k/Û(1) independent of k [14, 17]. This means that in the algebra WAk−1 all simple

fields of dimension ≥ 6 become null fields and the algebra WAk−1 truncates at cAk−1
(k +

1, k+2) = 2(k−1)
k+2

to the algebra W(2, 3, 4, 5) which is a unifying algebra for the first unitary
model of all WAk−1. In the following we will investigate more general cases such as the

nth unitary model of WAk−1. Similarly, the coset W
(2)
3 /Û(1) ∼= W(2, 3, 4, 5, 6, 7) which

will be discussed in [17] (‘W
(2)
3 ’ denotes the algebra of Polyakov and Bershadsky [20, 21])

is a unifying algebra for the non-unitary minimal models cAk−1
(k + 1, k + 3) of WAk−1.

In order to study these truncations and identifications in a systematic way we make use
of the observation [16] that deformable W-algebras can be parametrized with ‘universal’
formulae in which only the conformal dimension of a certain representation enters as pa-
rameter. More precisely, the structure constants of many W-algebras fall into different
classes, so that in each class the structure constants can be described by universal formu-
lae Cl

n m(c, h(c)). The parametrizing function h(c) varies for each of these algebras, being
in fact any one of the two conformal dimensions which correspond to representations with
a particularly low-lying null-state. Usually, there is also a third parametrizing function
h(c) that does not correspond to degenerate representations.

One of these classes are W-algebras of type W(2, 3, 4, . . .), that is W-algebras with primary
fields of dimensions 3 and 4 and any number of fields with dimension ≥ 5. Therefore, all
WAn−1-algebras and all truncations of them including in particular the special algebras

W(2, 3, 4, 5) ∼= ̂sl(2, IR)k/Û(1) and W(2, 3, 4, 5, 6, 7) ∼= W
(2)
3 /Û(1) belong to this class.

Another class is formed of some W-algebras of type W(2, 4, . . .) which includes the algebras
WBn and WCn as well as the orbifolds of WDn and WB(0, n). In this approach, the
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structure constants of the algebras WDn can be continued to negative values of the rank
such that the algebra W(2, 4, 6) ∼= WD−1 belongs to this class [16]. In [17] we shall give a

realization of WD−n in terms of the coset ̂sp(2n)k ⊕ ̂sp(2n)− 1
2
/ ̂sp(2n)k− 1

2
and show that

they are of type W(2, 4, . . . , 2n(n + 2)).

The fact that the structure constants in each class can be described solely by the set
of values of the three parameters for h(c), H = {h1(c), h2(c), h3(c)}, has the immediate
consequence that the structure constants for two algebras X and V , and hence the algebras,
become identical, whenever the sets HX and HV are equal. In general, the identification
will lead to a truncation of the algebra with the higher number of simple fields, say X ,
to an algebra V with less fields at a finite set of values for the central charge. We shall
denote this truncation by the symbol ‘⊲’, i.e.

X ⊲ V if HX = HV . (1.1)

However, we remark that the two sets HX und HV are also equal if V is a subalgebra of
X (at some fixed c-values) and no truncation takes place. There are indeed special cases
known where this occurs. Thus, one has to prove the existence of null fields in order to
confirm the truncation expected from this argument. Indications for the presence of null
fields will be presented in later sections.

Note that (1.1) is usually automatically satisfied if one hi ∈ HX is equal to one hj ∈ HV .
The exceptions are related to singularities that occur e.g. at c = 0 or at c = −2 (see (1.2)).

Identifications of W-algebras of type W(2, 3, 4, . . .)

The first few structure constants for these algebras are given in [16]. It is immediately
clear from the structure constants that any W-algebra of type W(2, 3, 4, . . .) (which can
be described by these structure constants) truncates to the algebra W(2, 3) at c = −2:

WAn−1 ⊲ W(2, 3)
W(2, 3, 4, 5) ⊲ W(2, 3)

W(2, 3, 4, 5, 6, 7) ⊲ W(2, 3)



 at c = −2. (1.2)

These truncations are independent of the values of h whence in these cases it is not nec-
essary that the corresponding sets H agree. We will omit such cases in the following and
restrict our discussion to cases where the sets H agree.

For the three algebras mentioned the set H = {h1, h2, h3} consists of the following values:

WAn−1 : 4n2h2
1,2 + 2

(
c−(n−1)(2n+1)

)
h1,2+c(n−1) = 0; h3 =

c(n + 1)

2(c+1−n)

W(2, 3, 4, 5) : h1 =
3c

2(c + 1)
; h2 =

c(2 − c)

8(c + 1)
; h3 = −

c + 4

2(c + 1)

W(2, 3, 4, 5, 6, 7) : h1 =
3(k + 1)

2k + 3
; h2 =

3(k + 1)(k + 2)

2(2k + 3)
; h3 = −

(k + 1)2

(k + 3)(2k + 3)

with c = −6
(k + 1)2

k + 3
.

(1.3)
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By identifying the sets HWAm−1
and HWAn−1

we find a solution for the central charge
where WAm−1 truncates to WAn−1 (m > n):

WAm−1 ⊲ WAn−1 at cm(n) = −
(m − 1)(n − 1)(m + n + mn)

m + n
. (1.4)

The identification (1.4) has already been proposed in [22] where equality of characters was
shown using the coset realization of WAn−1. Let us now investigate the truncations of
WAn−1 to W(2, 3, 4, 5). From eq. (1.3) we find the solutions 3)

WAn−1 ⊳⊲ W(2, 3, 4, 5) ∼=
̂sl(2, IR)n

Û(1)
at

c(n) = 2(n−1)
n+2

c(n) = −1 − 3n

c(n) = 2(1−2n)
n−2 .

(1.5)

The first truncation is the well-known identification of the coset ̂sl(2, IR)n/Û(1) with the
WAn−1-algebra for the first unitary minimal model. The other two truncations do not
correspond to minimal models.

We proceed in the same way for truncations of WAn−1 to W(2, 3, 4, 5, 6, 7):

WAn−1 ⊳⊲ W(2, 3, 4, 5, 6, 7) ∼=
W

(2)
3

Û(1)
at

k(n) = −3(n+1)
n+2

c(n) = −2(2n+1)2

n+2

k(n) = n−3
2

c(n) = −3(n−1)2

n+3

k(n) = 3−2n
n−2

c(n) = 6(n−1)2

(2−n)(n−3)
.

(1.6)

Here, we denote the level entering W
(2)
3 by ‘k’ [17, 20, 21]. Note that the second line of

(1.6) corresponds to minimal models of W
(2)
3 .

Identification of W-algebras of type W(2, 4, . . .)

We will now look for identifications between algebras of type W(2, 4, . . .). Since the bosonic
projections of the superalgebras WB(0, m) are described by the formulae for the orbifold
of WDn with n = m + 1

2
half-integer, we shall not consider these bosonic projections

separately, but use the notation of the orbifold of WDn for both of them, having in mind
that we treat the superalgebra WB(0, n− 1

2
) whenever n is half-integer. A further argument

for this notation is that both algebras are realized in terms of diagonal so(k)-cosets with
even and odd k = 2n respectively (see e.g. [1]). The orbifold of WD 3

2
for example is the

bosonic projection of the N = 1 Super Virasoro algebra – a non-freely generated algebra
of type W(2, 4, 6) (see e.g. [23, 14]). Moreover, also negative values of n are allowed for
WDn.

The first structure constants for this class of W-algebras have been presented in [16]. We

3) For n ≤ 4 W(2, 3, 4, 5) truncates to WAn−1, for n = 5 the two algebras are isomorphic
for the given values of c. We use therefore the symbol ‘ ⊳⊲ ’.
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give only the classifying sets H:

Orb (WDn) : 4n(n − 1)h2
1,2 +

(
c + n(3 − 4n)

)
h1,2 + c(n − 1) = 0; h3 = n;

WBn,WCn : 8n(1 + n)h2
1 + 2

(
c − n(3 + 2n)

)
h1 + c(2n − 1) = 0;

(2n − 1)(2n + 1)h2
2 +

(
c − n(6n + 1)

)
h2 + cn + 2n2 = 0;

2(c + 2n)h2
3 −

(
n(2n + 3) + c(4n + 3)

)
h3 + c(n + 1)(2n + 1) = 0;

where one of the solutions is for WB, the other one for WC.

(1.7)

For this class of algebras we find the following truncations with generic m > n:

Orb (WDm) ⊲ Orb (WDn) at c = −
mn(3 − 4m − 4n + 4mn)

m + n − 1
, (1.8)

WCm ⊲ WCn at c =
mn(3 + 2m + 2n − 4mn)

1 + m + n
, (1.9)

WBm ⊲ WBn at c = −
(2m+n+2mn)(m+2n+2mn)

m + n
, (1.10)

WBm ⊲ WCn at c =
4mn(3 + 2m + 2n)

(1 + 2m − 2n)(1 − 2m + 2n)
. (1.11)

Finally, for generic m and n, one has the following identifications where the larger algebra
truncates to the smaller one:

WBm ⊳⊲ WCn at c = −
2mn(3 + 2m + 2n + 4mn)

1 + 2m + 2n
, (1.12)

Orb (WDm) ⊳⊲ WBn at c =
2mn(−3 + 4m − 2n + 4mn)

1 − 2m − 2n
, (1.13)

Orb (WDm) ⊳⊲ WBn at c =
(n−m−2mn)(2mn−m−2n)

m + n
, (1.14)

Orb (WDm) ⊳⊲ WCn at c =
mn(3 − 4m + 2n)

(1 − m + n)(1 − 2m + 2n)
. (1.15)

For special values of m and n one might find additional solutions.

Let us now discuss some interesting consequences of these identifications. Eq. (1.14) can be
parametrized by the formula for the minimal models of WBn as cBn

(2n, 2n+2(m− 1
2
)+1).

Thus, for half-integer m = k + 1
2 WBn truncates at cBn

(2n, 2n+ 2k +1) to Orb (WDm) =
Orb (WB(0, k)). We can interpret Orb (WB(0, k)) as the unifying algebra of the WBn

models at cBn
(2n, 2n+2k+1). Eq. (1.13) can be parametrized as cBn

(2n−1+2m, 2n+1).
We infer that WBn truncates at these values to Orb (WDm) which serves as a unifying
algebra for these WBn minimal models. Using the realization of WDm and Orb (WB(0, m))
in terms of so(k)-cosets these identifications can be summarized as follows:

WBn
∼=





ŝo(k)µ⊕ŝo(k)1

ŝo(k)
µ+1

∼= Orb
(
WB(0, k−1

2 )
)
, k odd

Orb

(
ŝo(k)

µ
⊕ŝo(k)1

ŝo(k)µ+1

)
∼= Orb

(
WD k

2

)
, k even

at

{
c = kn(3+2n−2k−2kn)

k+2n−1
, µ = −2n(k−2)

2n+1
,

c = − (2kn+k−2n)(2kn−k−4n)
2(k+2n)

, µ = − (2n−1)k−4n

2n
.

(1.16)

5



Note also that when replacing m by −m, eq. (1.15) is parametrized by cCn
(m+n+1, 2m+

2n + 1) which can be interpreted as a truncation to the algebra Orb (WD−m) [17].

Interesting consequences follow from the fact that also the algebra W(2, 4, 6, 8, 10) which

arises as the orbifold of the coset ̂sl(2, IR)k/Û(1) [17] (hence the orbifold of the first unitary
model of WAk−1) belongs to the class of W-algebras of type W(2, 4, . . .) with

h1 =
2 − c

3
; h2 =

c + 1

2 (2 − c)
; h3 =

3 c

2 (c + 1)
. (1.17)

Note that in contrast to this the orbifold of WAn−1 for c generic does not belong to this
class, i.e. cannot be described by the general structure constants. Proceeding in the same
way as for the previous truncations we find

Orb (WDm) ⊲ W(2, 4, 6, 8, 10) ∼= Orb

( ̂sl(2, IR)k

Û(1)

)
at

c(m) = 2 − 3m
c(m) = 4m−1

2m+1

c(m) = − 2m
2m−3

,

(1.18)

WBm ⊲ W(2, 4, 6, 8, 10) ∼= Orb

( ̂sl(2, IR)k

Û(1)

)
at

c(m) = 4m
2m+3

c(m) = −2m
c(m) = −m+2

m−1 ,
(1.19)

WCm ⊲ W(2, 4, 6, 8, 10) ∼= Orb

( ̂sl(2, IR)k

Û(1)

)
at c(m) = −1 − 6m. (1.20)

These truncations are compatible with the truncation of WAn−1 to W(2, 3, 4, 5) (see eq.
(1.5)) exactly at the c-values for the first unitary model of WAn−1. In particular, we find
that the orbifold of the first unitary model of WA2n−1 is equal to the orbifold of the second
unitary model of WD n

2
(this can be confirmed using level-rank duality [17]), and that the

orbifold of the first unitary model of WA2n is equivalent to a unitary model of WBn. For
the example n = 2, c = 8

7 a detailed verification of this truncation Orb (W(2, 3, 4, 5)) ⊲
W(2, 4) is possible [17]. Note that this model is probably the only unitary minimal model
of W(2, 4) ∼= WB2 [24].

2. Null fields in linear W∞-algebras

In the previous section we have found identifications between W-algebras. They imply
truncations for which we will provide further support in this section by verifying that in
the limit n → ∞ one does indeed obtain truncations of the various linear W∞-algebras.
There are four types of linear W∞-algebras, the usual W∞, W1+∞ (see e.g. [25− 27]) and
their subalgebras WB∞ and WC∞ formed by the even-dimensional fields. The results in
the previous section predict the following truncations:

(1.2) ⇒ W∞ ⊲ W(2, 3) at c = −2
(1.5) ⇒ W∞ ⊲ W(2, 3, 4, 5) at c = −4 and c = 2
(1.6) ⇒ W∞ ⊲ W(2, 3, 4, 5, 6, 7) at c = −6
(1.11) ⇒ WB∞ ⊲ WCn at c = −2n
(1.15) ⇒ WC∞ ⊲ Orb (WDn) at c = n
(1.19) ⇒ WB∞ ⊲ W(2, 4, 6, 8, 10) at c = −1 and c = 2.

(2.1)
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The OPEs for the W∞-algebras are particularly simple [25, 26] and one can calculate the
first null fields explicitely. In our calculations we have restricted to the first null field which
indicates but does not really prove the truncation of a W∞-algebra to a finitely generated
W-algebra.

For W∞ and WB∞ we have checked the presence of null fields up to scale dimension 12,
for WC∞ up to dimension 18. One does indeed find null fields for those values of c and the
scale dimension predicted by (2.1). In addition to the confirmation of (2.1) we find further
truncations. For W∞ we find that W∞ ⊲W(2, 3, . . . , 9) at c = −8 and W∞ ⊲W(2, 3, . . . , 11)
at c = −10 and c = 4. On the basis of these truncations we conjecture that for any integer
r a generic algebra of type W(2, 3, 4, . . . , 2r + 1) exists which is a unifying algebra for
WAn−1 at cAn−1

(n − r, n − r + 1) (the conjecture for the central charge is based on the
cases 1 ≤ r ≤ 3). The truncation W∞⊲W(2, 3, . . . , 11) at c = 4 corresponds to the unifying
W-algebra for the second unitary minimal models of WAn−1 (see below and [17]).

Also for WB∞ we find one additional truncation to a W(2, 4) at c = 1 which plays the
same rôle as the truncation of algebras of type W(2, 3, 4, . . .) to W(2, 3) at c = −2: The
truncation to a W(2, 4) or W(2, 4, n) is a general feature for algebras of type W(2, 4, . . .).
Note that because of the presence of the algebras WD−n eq. (2.1) also contains the trun-
cations WC∞ ⊲ W(2, 4, . . . , 2n(n + 2)) at c = −n. Furthermore, we find the unexpected
truncation WC∞ ⊲ W(2, 4, . . . , 14) at c = −1

2
.

In the case of W1+∞ we have investigated null fields up to dimension 7. We find that
W1+∞ ⊲ W(1, . . . , n) at c = n, i.e. for the nth unitary minimal model [28], and W1+∞ ⊲
W(1, 2, 3) at c = −1. This result is consistent with the determinant formulae of W1+∞
presented recently [29]. It is interesting to note that truncations take place for all unitary
quasi-finite representations [28]. Thus, the existence of non-trivial unitary quasi-finite
modules seems to imply the truncation of W1+∞ to a finitely generated algebra.

3. Truncations of Casimir W-algebras and the Kac determinant

In the two previous sections we have obtained indications for truncations of Casimir W-
algebras. We will now provide further support for these truncations by inspection of the
Kac determinant.

Let Lk be a simple Lie algebra of rank k overC, ∆ the set of its roots, ρ (ρ∨) the sum of its
(dual) fundamental weights, h (h∨) its (dual) Coxeter number and WLk the corresponding
Casimir W-algebra.

Then the Kac determinant of the vacuum Verma module MN at level N related to WLk

is given by [1]:

detMN ∼
∏

β∈∆

∏

mn≤N
m,n∈IN

(
(α+ρ + α−ρ∨, β) + ( 1

2
(β, β)mα+ + nα−)

)pk(N−mn)
(3.1)

where pk(x) is the number of partitions of x into k colours and the α± are related to the
central charge by

α+α− = −1, c = k − 12(α+ρ + α−ρ∨)2. (3.2)
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At least one W-algebra singular vector has to exist if a Casimir W-algebra truncates at a
certain value of the central charge. Therefore, the Kac determinant of the vacuum Verma
module has to vanish at the level corresponding to the singular vector.

Let us now concentrate on degenerate values of the central charge of the Casimir W-algebra
where one has α+ = q√

pq
and α− = − p√

pq
with p, q ∈ IN such that

cLk
(p, q) = k − 12

(q ρ − p ρ∨)2

pq
. (3.3)

The condition that a singular vector occurs at level N implies that one of the non-embedded
factors of the Kac determinant with N = mn (m, n positive) is zero for a certain root β:

(α+ρ + α−ρ∨, β) +
(

1
2
(β, β)mα+ + nα−

)
= 0. (3.4)

Using the expressions for α± this implies

p + q

p − q
=

1
2(β, β)m + n + (ρ, β) + (ρ∨, β)
1
2(β, β)m − n + (ρ, β) − (ρ∨, β)

. (3.5)

For given p and q the root leading to the lowest singular vector is the highest root of length
2 for all simple Lie algebras besides Ck where one has to take the sum of the simple roots
(a table of these roots can be found in [30]). Choosing this root for β and parametrizing
p and q as p = h∨ − 1 + r, q = h − 1 + s we obtain

r + s + h + h∨ − 2

r − s − h + h∨ =
m + n + h + h∨ − 2

m − n − h + h∨ . (3.6)

Obviously, m = r and n = s are solutions of this equation as long as

r + h∨ 6= s + h. (3.7)

If r, s > 0 this implies the existence of a W-algebra singular vector at level N = rs for
central charge cLk

(h∨ − 1 + r, h− 1 + s). Note that for a given value of the central charge
one has to choose minimal p, q such that p ≥ h∨, q ≥ h. This choice of not necessarily
coprime integers ensures r, s > 0.

A truncation takes place if the singular vector at level N = rs corresponds to a non-
composite field and if with the vanishing of the simple field of dimension N also all other
simple fields with dimension greater than N become null fields. A singular vector at N = rs
with N less than the maximal spin of the generating simple fields indicates a truncation
of the Casimir algebra. We will now discuss examples where truncations can be obtained
from this argument.

The Casimir algebra of type WAn truncates for c = cAn
(n + r, n + s) to an algebra of

type W(2, 3, . . . , rs−1). This supports the identification (1.4) which corresponds to r = 1.
Furthermore, for the kth unitary minimal model of WAn this predicts a truncation to a
W(2, 3, . . . , k2 + 3k + 1) (r = k + 1, s = k + 2) which will be established in [17]. From the
free field realization [31] it follows that all non-composite fields of dimension greater than

8



N vanish if the non-composite field of dimension N is a null field. Thus, for WAn the only
assumption which is not proven yet is that the W-algebra singular vector at level N = rs
corresponds to a non-composite field.

The Casimir algebras related to the simple Lie algebras of type Bn and Cn truncate for
r·s even to W-algebras of type W(2, 4, . . . , rs − 2) for c = cBn

(2n − 2 + r, 2n − 1 + s)
and c = cCn

(n + r, 2n − 1 + s), respectively. This verifies eqs. (1.8)-(1.15). Furthermore,
it implies the truncation of WCn at cCn

(m + n + 1, 2m + 2n + 1) to an algebra of type
W(2, 4, . . . , 2m(m + 2)). These unifying objects are in fact the algebras WD−m as will be
shown in [17]

The ZZ2 orbifold of the WDn Casimir algebra [17] truncates for c = cDn
(2n − 3 + r, 2n −

3 + s) for r·s even to an algebra of type W(2, 4, . . . , rs − 2). For the kth unitary minimal
model of Orb (WDn) (s = r + 1 = k + 2) this predicts a unifying W-algebra of type
W(2, 4, . . . , k2 + 3k). This identification can be verified applying a character argument to
level-rank-duality [17]. The case k = 2 is the second line of (1.18).

The truncations of Casimir W-algebras indicated by the Kac determinant are summarized
in table 1.

Casimir algebra c truncated algebra

WAn cAn
(n + r, n + s) W(2, . . . , rs − 1)

WBn cBn
(2n − 2 + r, 2n − 1 + s) W(2, 4, . . . , rs − 2) for r·s even

WCn cCn
(n + r, 2n − 1 + s) W(2, 4, . . . , rs − 2) for r·s even

Orb (WDn) cDn
(2n − 3 + r, 2n − 3 + s) W(2, 4, . . . , rs − 2) for r·s even

Table 1: Truncations of Casimir W-algebras

4. Conclusion and outlook

In this letter we have shown the existence of many identifications between W-algebras using
a particular parametrization of the structure constants. The identifications are closely
related to truncations of W-algebras. In particular, we predicted various truncations of
Casimir W-algebras and the linear W∞-algebras. We confirmed and generalized these
truncations by inspection of the Kac determinant.

Bits and pieces of this picture have been scattered over the literature including a large
number of misleading statements which we did not refer to.

A unifying W-algebra exists at generic c for each truncation in table 1 and fixed positive
integers r, s satisfying (3.7). This can be established e.g. by regarding the structure
constants of these algebras which have fixed field content as continuous functions of the
level n using the parametrizations (1.3) and (1.7). Another argument is that for a given set
of generating fields the Jacobi identities are satisfied for all c because of their polynomial
character once they are satisfied for infinitely many values of the central charge c. Note
that each Casimir W-algebra truncates only for finitely many values of the central charge
c. Nevertheless one obtains infinitely many unifying W-algebras (for each r, s) which start
at a rank that increases as quickly as r·s does.
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Some of these unifying W-algebras can be realized in terms of cosets generalizing the
notion of level-rank-duality [18, 19]. Note that a coset realization automatically ensures the
existence of the W-algebra for generic c. We already presented a few of these realizations
in this letter, further ones will be established in [17]. These realizations are summarized
in table 2.

Casimir central charge coset realization dimensions of dimension of

algebra c of unifying algebra simple fields first null field

WAn−1 cAn−1
(n+k, n+k+1)

̂su(k+1)
n

ŝu(k)n⊕Û(1)
2, 3, . . . , k2 + 3k + 1 k2 + 3k + 4

WAn−1 cAn−1
(n+1, n+3)

W(2)
3

Û(1)
2, 3, 4, 5, 6, 7 10

Orb (WDn) cDn
(n+k+1, n+k+2) Orb

(
̂so(k+1)2n

ŝo(k)2n

)
2, 4, . . . , k2 + 3k k2 + 3k + 4

WBn
cBn

(2n+k−1, 2n+1)
cBn

(2n, 2n+k)
(Orb)

(
ŝo(k)

µ
⊕ŝo(k)1

ŝo(k)µ+1

)
2, 4, . . . , 2k 2k + 4

WCn cCn
(n+k+1, 2n+2k+1)

̂sp(2k)n⊕ ̂sp(2k)
− 1

2

̂sp(2k)
n− 1

2

2, 4, . . . , 2k2 + 4k 2k2 + 4k + 5

Table 2: Coset realization of unifying W-algebras

The identifications between different W-algebras occur not only for rational but also for
degenerate models. There are indications [17] that all minimal models of the unifying
W-algebras arise from identifications with minimal models of Casimir W-algebras. Thus,
these new unifying W-algebras do probably not give rise to new minimal models and may
therefore be irrelevant for the classification of rational conformal field theories.

Looking for rational models, it is intriguing that at least for W1+∞ the existence of non-
trivial unitary quasi-finite modules seems to imply the truncation to a finitely generated
algebra.

Still, these unifying structures provide us with new insights into conformal field theory.
For example, this gives a unified approach to the conformally invariant second order phase
transition of ZZn spin quantum chains. They all share the same W(2, 3, 4, 5) symmetry
algebra and the growth of the number of states with energy is always bounded by the
number of partitions into two colours. Finally, we would like to mention that these unifying
W-algebras have supersymmetric generalizations (see [32] for examples in the case N = 2).
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