
arXiv:2303.15298

The percolating cluster is invisible to image recognition with deep learning

Djénabou Bayo,1, 2, ∗ Andreas Honecker,2, † and Rudolf A. Römer1, ‡

1Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
2Laboratoire de Physique Théorique et Modélisation,

CNRS UMR 8089, CY Cergy Paris Université, Cergy-Pontoise, France
(Dated: March 27, 2023)

We study the two-dimensional site-percolation model on a square lattice. In this paradigmatic
model, sites are randomly occupied with probability p; a second-order phase transition from a
non-percolating to a fully percolating phase appears at occupation density pc, called percolation
threshold. Through supervised deep learning approaches like classification and regression, we show
that standard convolutional neural networks (CNNs), known to work well in similar image recogni-
tion tasks, can identify pc and indeed classify the states of a percolation lattice according to their p
content or predict their p value via regression. When using instead of p the spatial cluster correlation
length ξ as labels, the recognition is beginning to falter. Finally, we show that the same network
struggles to detect the presence of a spanning cluster. Rather, predictive power seems lost and the
absence or presence of a global spanning cluster is not noticed by a CNN with local convolutional
kernel. Since the existence of such a spanning cluster is at the heart of the percolation problem,
our results suggest that CNNs require careful application when used in physics, particularly when
encountering less-explored situations.

I. INTRODUCTION

Convolution neural nets (CNN) are a class of deep,
i.e., multi-layered, neural nets (DNNs) in which spatial
locality of data values is retained during training in a
machine learning (ML) setting. When coupled with a
form of residual learning [1], the resulting residual net-
works (ResNets) have been shown to allow astonishing
precision when classifying images, e.g., of animals [2] and
handwritten characters [3], or when predicting numerical
values, e.g., of market prices [4]. In recent years, we also
witnessed the emergence of DNN techniques in several
fields of physics as a new tool for data analysis [5–8]. In
condensed matter physics in particular, DNN and CNN
proved to be performing well in identifying and classify-
ing phases of material states [9–12].

Despite all these studies, the ML process in itself tends
to be somewhat a black box, and it is yet not known what
is allowing a DNN to correctly identify a phase. In or-
der to gain further insight into this issue, we choose a
well-known and well-studied system exhibiting perhaps
the simplest of all second-order phase transitions, the
site-percolation model in two spatial dimensions [13, 14].
In this model, a cluster spanning throughout the sys-
tem emerges at an occupation probability pc, leading
to a non-spanning phase when p < pc while p ≥ pc
corresponds to the phase with at least one such span-
ning cluster [14]. Several ML studies on the percolation
model have been already published, mostly using super-
vised learning in order to identify the two phases via ML
classification [15, 16]. An estimate of the critical expo-
nent, ν, of the percolation transition has also been given

∗ Djenabou.Bayo@warwick.ac.uk
† Andreas.Honecker@cyu.fr
‡ R.Roemer@warwick.ac.uk

[15]. The task of determining pc was further used to eval-
uate different ML regression techniques in Ref. [17]. For
unsupervised and generative learning, less work has been
done [16, 18]. While some successes have been reported
[18], other works show the complexities involved when
trying to predict percolation states [16].

In this work, we start by replicating some of the su-
pervised DL analyses. We find that CNNs usually em-
ployed in image recognition ML tasks also work very well
for classifying percolation states according to p as well
as for regression when determining p from such states.
The results are less convincing when instead of p, we
use the spatial correlation lengths ξ as an alternative
means to characterize the phase boundary. We find that,
even when correcting for probable difficulties due to non-
balanced data availability for ξ, classification and regres-
sion tasks fail to give acceptably diagonal confusion ma-
trices. Crucially, when analyzing in detail whether span-
ning clusters < pc or non-spanning clusters > pc are cor-
rectly identified, we find the CNNs that performed so well
in the initial image recognition tasks now consistently fail
to reflect the ground truth. Rather, it appears that the
CNNs use p as a proxy measure to inform their classifica-
tion predictions — a strategy that is obviously false for
the percolation problem. We confirm this conclusion by
testing our networks with bespoke test sets that include
artificially spanning clusters < pc or firebreak structures
for > pc.

II. MODEL AND METHODS

A. The percolation model

The percolation problem is well-known with a rich
history across the natural sciences [13, 14, 19–22]. It
provides the usual statistical characteristics across a

mailto:Djenabou.Bayo@warwick.ac.uk
mailto:Andreas.Honecker@cyu.fr
mailto:R.Roemer@warwick.ac.uk


2

second-order transition such as, e.g., critical exponents,
finite-size scaling, renormalization and universality [14].
Briefly, on a percolation lattice of size L× L, individual
lattice sites ~x = (x, y), x, y ∈ [1, L], are randomly occu-
pied with occupation probability p such that the state ψ
of site ~x is ψ(~x) = 1 for occupied and ψ(~x) = 0 for un-
occupied sites. We say that a connection between neigh-
boring sites exists when these are side-to-side nearest-
neighbors on the square lattice, while diagonal sites can
never be connected. A group of these connected occu-
pied sites is called a cluster. Such a cluster then per-
colates when it spans the whole lattice either vertically
from the top of the square to the bottom or, equiva-
lently, horizontally from the left to the right. Obviously,
for p = 0, all sites are unoccupied and no spanning clus-
ter can exist while for p = 1 the spanning cluster trivially
extends throughout the lattice. In Fig. 1, we show exam-
ples of percolation clusters generated for various p values.
The percolation threshold is at p = pc(L), such that for
p < pc(L) most clusters do not span while for p > pc(L)
they do. This can be expressed as the percolation prob-
ability P (p) = 〈sL(p)/L2〉, where sL(p) gives the size of
the (largest) percolating cluster for size L and 〈·〉 denotes
an average over many randomly generated realizations.
Similarly, we can define a probability of non-percolating,
Q(p) = 〈(L2 − sL(p))/L2〉 and P (p) + Q(p) = 1. For
an infinite system (L → ∞), one finds the emergence of
an infinite spanning cluster at pc = 0.59274605079210(2).
This estimate has been determined numerically evermore
precisely over the preceding decades [23] while no analyt-
ical value is yet known [22]. Another quantity often used
to characterize the percolation transition is the two-site
correlation function g(r) = 〈ψ(~x)ψ(~x + ~r)〉~x,|~r|=r, where
the 〈·〉~x,|~r|=r denotes the average over all ~x and directions
|~r|. This g(r) measures the probability to have two occu-
pied sites separated by a distance r, in the same cluster
[14]. The associated correlation length ξ is determined

through ξ =
√∑

r r
2g(r)/

∑
r g(r). In the infinite system

ξ diverges at pc as |p− pc|−ν , where ν = 4/3 is the crit-
ical exponent, determining the universality class of the
percolation problem [14].

B. Generating percolation states for training and
validation

In order to facilitate the recognition of percolation
with image recognition tools of ML, we have gener-
ated finite-sized L × L, with L = 100, percolation
states, denoted as ψi(p), for the 31 p-values 0.1, 0.2, . . .,
0.5, 0.55, 0.555, 0.556, . . . , 0.655, 0.66, 0.7, . . . , 0.9. For
each such p, N = 10000 different random ψi(p) have
been generated. Each state ψi(p), i = 1, . . . , N , is of
course just an array of numbers with 0 denoting unoccu-
pied and 1 occupied sites. Nevertheless, we occasionally
use for convenience the term “image” to denote ψi(p).
The well-known Hoshen-Kopelman algorithm [24] is used
to identify and label clusters from which we (i) compute

s(p), g(r), and ξ(p) as well as (ii) determine the presence
or absence of a spanning cluster. In Fig. 1 we show exam-
ples of percolation states generated for various p values
as well as the extracted P100, Q100, pc(100) and 〈ξ(p)〉 es-
timates. The different gray scales used in Fig. 1(a) mark
the different connected clusters. However, for the ML
approach below, we shall only use the numerical values 0
and 1 corresponding to the state ψi(p) [25]. This is visu-
alized as the simple black and white version shown, e.g.,
for p = 0.5 in Fig. 1 (a). From Figs. 1 (b+c), we note that
P (p) and ξ(p) behave qualitatively as expected [14], with
P (p) . 1 for p < pc and P (p) & 0 for p > pc and ξ(p)
maximal near pc. Clearly, pc(L = 100) ∼ 0.585(5) < pc.
This latter behavior is as expected since sL(p) ≤ s∞(p),
i.e., a cluster that seemingly spans an L×L finite square
might still not span on an infinite system.

We emphasize that in the construction, we took care
to only construct states such that for each p, the num-
ber of occupied sites is exactly Nocc = p× L2 and hence
p can be used as exact label for the supervised learning
approach. We note that p = Nocc/L

2 can therefore also
be called the percolation density. For the ML results
discussed below, it will also be important to note that
the spacing between p values reduces when p reaches 0.5
with the next p value given by 0.55 and then 0.555. Sim-
ilarly, the p spacing increases as 0.655, 0.66, 0.7. We will
later see that this results in some deviations from perfect
classification/regression. Last, we have also generated a
similar test set with L = 200. As the ML training cy-
cles naturally take much longer, we have not averaged
these over ten independent trainings. We find that our
results do not change significantly when using this much
larger data set and hence we will refrain from showing
any result for these larger states in the following.

C. Supervised ML strategy for phase prediction

As discussed above, DL neural nets using the power
of CNNs are among the preferred approaches when try-
ing to identify phases in condensed matter systems [26–
28]. Here, we shall use a ResNet18 [1] network with 17
convolutional and 1 fully-connected layers, pretrained on
the ImageNet dataset [29]. As basis of our ML imple-
mentation we use the PyTorch suite of ML codes [30].
We train the ResNet18 on the percolation of 310000
states, using a 90%/10% split into training and valida-
tion data, T and V, respectively; this corresponds to
Ntrain = 279000 and Nval = 31000 samples, respectively.
We concentrate on two supervised ML tasks. First, we
classify percolation images according to (i) p, (ii) ξ as
well as (iii) spanning versus non-spanning. In the second
task, we aim to predict p and ξ values via ML regres-
sion. In both tasks, the overall network architecture re-
mains identical, we just adapt the last layer as usual [31].
For the classification the output layers have a number of
neurons corresponding to the number of classes trained,
i.e., for the classification by density the C = 31 p-values



3

(a) (b)

N
S
Nτ
Sτ
pc
pc(L)

P(
p)
,	Q
(p
)

0

0.2

0.8

1

p
0.56 0.58 0.6 0.62

(c)

pc
pc(L)

〈	ξ
	〉

0

2

4

6

8

10

p
0 0.2 0.4 0.6 0.8 1

FIG. 1. (a) Examples of percolation clusters of size L2 = 1002, obtained for p = 0.2 < pc, 0.6 > pc in the top row and p = 0.5,
i.e. close to pc, in the bottom row. While individual clusters have been highlighted with different gray scales for the first three
images, the bottom right image with p = 0.5 shows all occupied sites in black only, irrespective of cluster identity. This latter
representation is used below for the ML approach. (b) Percolation probabilities P (p) and Q(p) of having a spanning (blue
open squares) / non-spanning (red open circles) cluster close to the percolation threshold for dataset T ∪ V. The percolation
probability of having a spanning (cyan crosses) / non-spanning (orange plus) cluster close to the percolation threshold for
dataset τ . (c) Correlation length ξ(p). In (b+c), the vertical lines indicate the estimates pc(100) ∼ 0.585(5) (dotted) and pc
(dashed).

given above, while for regression the output layer has
only one neuron giving the numerical prediction. How-
ever, the loss functions are different. Let w denote the set
of parameters (weights) of the ResNet and let (ψi, χi)
represent a given image sample with χi its classifica-
tion/regression target, i.e., classes p or ξ, and also χ′i
the predicted values, p′ or ξ′. For classification of cate-
gorical data, the class names are denoted by a class index
c = 1, . . . , C and encoded as χck = 1 if χc = k, 0 other-
wise. Then, for the (multi-class) classification problem,
we choose the usual cross-entropy loss function, lc(w) =

−
∑n
k=1

∑C
c=1 χck logχ′ck(w) + (1−χck) log[1−χ′ck(w)],

where n is the number of samples, i.e., either Ntrain or
Nval [26]. We use the AdaDelta optimizer [32] and
find that a learning rate of `r = 0.001 produces good
convergence [33]. Another good metric for the classi-
fication task is the accuracy a, which is the ratio of
correct predictions over n. The loss function for the
regression problem is given by the mean-squared error
lr(w) = 1

n

∑n
k=1[χk−χ′k(w)]2 while `r and the optimizer

remain the same. When giving results for lc and lr below,
we always present those after averaging over at least 10
independent training and validation cycles, i.e., with a
different initial split of the data into mini-batches. We
use the notation 〈lc〉 and 〈lr〉 to indicate this averaging.
In the case of classification, we also represent the quality
of a prediction by confusion matrices [26]. These graphi-
cally represent the predicted class labels as a function of
the true ones in matrix form, with an error-free predic-
tion corresponding to a purely diagonal matrix. For com-
parison of the classification and regression calculations,
we use in both cases a maximum number of εmax = 20
epochs.

Our ML calculations train with a batch size of 256 for

classification and for regression. All runs are performed
on NVIDIA Quadro RTX6000 cards.

D. Generating test data sets

We generate a test data set, τ , of 1000 states for each
of the 31 p-values, such that in total we have Nτ = 31000.
This test set is used to make all the confusion matrices
given below. By doing this, we ensure that the perfor-
mance of the trained DL networks is always measured on
unseen data [27].

In addition, we generate three special test data sets.
These data sets have been constructed to allow test-
ing for the existence of the spanning cluster. The
first special data set, τsl, is made for the 27 p-values
0.5, 0.55, 0.555, . . . , 0.66, 0.7 close to pc and again consists
of 1000 states ψi(p) for each p. After generating each
ψi(p), we add a straight line of occupied sites from top
to bottom, while keeping p constant by removing other
sites at random positions. Obviously, every ψi(p) in τsl
therefore contains at least one spanning cluster by con-
struction. As a consistency check to the performance of
the ML networks, we also add two more ψi without any
connecting path for p = 0.1 and 0.2.

In the next set, τrw, we start with the same 27 p-values
for a new set of 27000 ψi(p), but instead of the straight
line, we add a directed random walk from top to bottom.
As before, we conserve the overall density p of occupied
sites. Hence, every samples in τrw is spanning. We again
add two ψi for p = 0.1 and 0.2 without the connected
random path.

Finally, the third special data set, τfb, again con-
tains 27000 lattices for the same previously mentioned



4

(a) (b) (c)

FIG. 2. Examples of percolation images from the three spe-
cial test sets τS with (a) a percolating straight line from top
to bottom, (b) a percolating random path from top to bot-
tom and (c) a ”firebreak”-like cross of empty sites preventing
percolation. For the sake of visibility, in (a+b) the connected
path is highlighted in red. In all three cases, p = 0.5.

27 p-values, but in each of the states we apply random
firebreak paths, horizontally and vertically, of unoccu-
pied sites. This set is clearly non-spanning. Following
the same logic as for τsl and τrw, we add two spanning
test samples above pc without the firebreak, namely, for
p = 0.8 and 0.9. In all three cases, despite the modifi-
cation in the lattices we ensure that Nocc = p × L2 and
hence the occupation density is p. Examples of the three
sets can be seen in Fig. 2.

III. RESULTS

A. Classification of states labeled with density p

We use the density p values as labels for the ML task
of image recognition with the DL implementation out-
lined in section II C. After ten trainings with all 310000
images for 20 epochs, we find on average a validation loss
of 〈lc,val〉 = 0.052± 0.009 (corresponding to an accuracy
of 〈ac,val〉 = 99.323% ± 0.003). This is comparable to
the very good image classification results shown on kag-
gle [34]. Fig. 3(a) gives the resulting averaged confusion
matrix. The dependence of the training and validation
losses, 〈lc,train〉 and 〈lc,val〉, respectively, on the number
of epochs, ε, is shown in Fig. 3(b). From the behavior
of the loss functions, we can see that 〈lc,val〉 ≥ 〈lc,train〉
until ε = 15 after which both losses remain similar. This
suggests that εmax = 20 for our DL approach is indeed
sufficient and avoids over-fitting. Similarly, the confu-
sion matrix is mostly diagonal with the exception of very
few samples around the change of resolution in density,
at p ∼ 0.555 and 0.655, as commented before in section
II A.

B. Prediction of densities p via regression

For the regression problem, we train the ResNet18
only for the nine evenly spaced densities p =
0.1, 0.2, . . . , 0.9. After training and validation with T
and V, respectively, we examine the states in τ and
predict their p values. In Fig. 4, we present the re-
sults with (a) indicating the fidelity of the predictions

(a)

0.
1

0.
3

0.
5

0.
55
5

0.
56
5

0.
57
5

0.
58
5

0.
59
5

0.
60
5

0.
61
5

0.
62
5

0.
63
5

0.
64
5

0.
65
5

0.
7

0.
9

p

0.1
0.3
0.5

0.555
0.565
0.575
0.585
0.595
0.605
0.615
0.625
0.635
0.645
0.655
0.7
0.9

p′

0

200

400

600

800

1000

(b)

min(lc,val)
lc,train
lc,val

l c

0

1

2

3

4

5

6

ε
0 5 10 15 20

FIG. 3. (a) Average confusion matrix for classification ac-
cording to p. The dataset used is the test data τ and the
models used for predictions are those corresponding with a
minimal lc,val. True labels for p are indicated on the horizon-
tal axis while the predicted labels are given on the vertical
axis. The color scale represents the number of samples in
each matrix entry. (b) Dependence of losses lc,train and lc,val
averaged over ten independent training seeds, on the number
of epochs ε for classification according to p. The squares (blue
open) denote lc,train while the circles (red solid) show lc,val.
The green crosses indicate the minimal lc,val for each of the
ten trainings.

(a)

trained
not	trained

p'

0

0.2

0.4

0.6

0.8

1

p0 0.2 0.4 0.6 0.8 1
(b)

min(lr,val)
lr,train
lr,val

l r

0

0.25

0.5

1

1.25

1.5

ε
0 5 10 15 20

FIG. 4. (a) Average prediction curve obtained for regression
according to p at the minimal lr,val. The dataset used is the
test data τ and the models used for predictions are those
corresponding with a minimal lc,val. The blue open squares
denote p-values that have been used during the training and
the green open circle shows p-values that were not trained. (b)
Dependence of losses lr,train and lr,val averaged as in Fig. 3 on
the number of epochs ε for regression according to p. The
squares (blue open) denote lr,train while the circles (red solid)
show lr,val. The green crosses show the minimal lr,val for each
of the ten trainings.

for each p-value and (b) showing good convergence of
the losses lr,train and lr,val. Clearly, the regression works
very well for the nine trained p-values p = 0.1, . . . , 0.9 as
well as the untrained values 0.55, 0.555, . . . , 0.0.655, 0.66
close to pc(100). After reaching ε = 20, we find that
minε[〈lr,train〉] = 0.0003 ± 0.0002 and minε[〈lr,val〉] =
(6.2± 1.2)× 10−5.

Therefore we conclude that our CNN performs well
for classification and regression tasks while T , V, and τ
present appropriately structured data sets for these ML
tasks in terms of data size.



5

(a) (b)

min(lc,val)
lc,train
lc,val

l c

0

2

4

6

8

10

ε
0 5 10 15 20

FIG. 5. (a) Average confusion matrix for classification ac-
cording to 〈ξ〉. The dataset used is the test data τ and the
models used for predictions are those corresponding with a
minimal lc,val. (b) Dependence of losses lc,train and lc,val on
the number of epochs ε for classification according to 〈ξ〉. We
follow the same convention as in Fig. 3 and Fig. 7.

C. Classification with correlation length ξ

We now turn our attention to studying image recog-
nition when using the correlation lengths ξ, instead of
p, as labels for the ψi(p) states. One way to do this is
to use 〈ξ(p)〉 as label. While for the classification by p
the label value was identical to the actual density p of
a given state, now each state is labeled by 〈ξ(p)〉. This
means that the actual ξ of the state might be different
from the label assigned. Since 〈ξ(p)〉 can be uniquely
identified by p, this strategy should be in fact equivalent
to the previous situation and the CNN should give us
similar classification results. The results of such a clas-
sification are shown in Fig. 5 where similarly to Fig. 3
we present in (a) the average confusion matrix for the
31 〈ξ(p)〉 values (cf. also Fig. 1) and in (b) the evolution
of losses during the training. We find a validation loss
of minε[〈lc,val〉] = 0.38 ± 0.07 (corresponding to a max-
imal accuracy of maxε[〈ac,val〉] = 87.12% ± 0.05) and a
highly diagonal confusion matrix, with only a small de-
viation that can be linked to the change in resolution in
our data set above p = 0.5.

One might wish to interpret the above classification
with 〈ξ(p)〉 as a success of the ML approach. However,
let us reemphasize that it is fundamentally equivalent
to simply changing labels while keeping the direct con-
nection of the labels with p unaltered. We now wish to
obtain a classification of states via their ξ’s which is inde-
pendent of the p’s. In Fig. 6 we show the distribution Ξ
of the ξ’s in T ∪V. Clearly, the number of small ξ values
is larger than the number of ξ values close to the maximal
value of max[ξ] = 15.771 (cp. Fig. 1(c)). Hence simply
using each ξ as label for the corresponding ψi would result
in a biased dataset. We therefore reorganize the T ∪ V
data set. This can be done in two ways. For the first re-
organization we create bins a constant number of 10000
samples in each bin. We call this dataset Ξn. This results
in a varying bin width. The second way to reorganize the
data set is to keep the bin width constant while restrict-

(a)

p<pc

Ξ
Ξw
Ξn

%

0

0.1

0.3

0.4

ξ0 2.5 5 7.5 10 12.5 15 17.5
(b)

p>pc

Ξ
Ξw
Ξn

%

0

0.1

0.3

0.4

ξ0 2.5 5 10 12.5 15

FIG. 6. Probability distributions for correlation lengths ξ
when (a) p < pc (with 12 p-values) and p > pc (18 p-values)
with unbalanced Ξ and the balanced counterparts Ξn and Ξw

denoted by yellow, magenta and green, respectively. In each
case, the distributions are normalized relative to the total
number of ξ’s in each set, i.e. for (a) 120000 in Ξ and Ξn and
6 = 21360 in Ξw while for (b) there are 180000 in Ξ and Ξn

and 5× 3077 = 15385 in Ξw.

ing the number of samples in each bin. We shall denote
this reorganization as Ξw. Since ξ(p) is non-monotonic
in p, we split the reorganization into the case (i) p < pc
with and (ii) p > pc. We emphasize that the reorganized
data sets consist of the same states as in T ∪ V but now
have different labels according to the bin labels for Ξw
and Ξn. Furthermore, there is now no longer any direct
connection of the new labels to the original p densities.

In Fig. 7, we plot the resulting confusion matrices and
losses. We see that the classification for Ξw and Ξn only
results in large diagonal entries in the confusion matrices
for small correlation lengths labels ξ. Overall, the clas-
sification for Ξw is somewhat better than for Ξn when
away from pc(L). We attribute this to the larger number
of states for the Ξw for p < pc(L). Still, with overall
62.6% and 55.1% of states misclassified for Ξw and Ξn,
respectively, it seems clear that classification for correla-
tion lengths must be considered unsatisfactory.

D. Regression with correlation length ξ

For the regression task with ξ, we proceed analogously
to section III B. Again, we train the CNN for the individ-
ual correlation length ξi corresponding to each ψi ∈ T for
the nine densities p = 0.1, . . . , 0.9. We then compute the
predictions of ξi for all 31 densities in τ . The results are
shown in Fig. 8. We find that the network architecture
which previously predicted the density quite accurately is
now struggling to correctly predict ξ. A structure seems
to exist in the predictions. By looking closely we notice
that the network make use of the density for its predic-
tions. Furthermore, by plotting the correlation length
according to the density we retrieve the plot of ξ Fig. 1.



6

Ξw, p < pc(L)

(a.1)

0.
18

0.
64

3.
16

5.
51

6.
36

7.
25

(p)

0.18

0.64

3.16

5.51

6.36

7.25

′ (p
)

0

200

400

600

800

1000

min(lc,val)
lc,train
lc,val

l c

1

1.2

1.4

1.6

1.8

2

ε
0 5 10 15 20

Ξn, p < pc(L)

(a.2)
0.55 2.97 3.85 5.83 6.98 8.39

(p)

0.55

2.97

3.85

5.83

6.98

8.39

′ (p
)

0

50

100

150

200

250

300 min(lc,val)
lc,train
lc,val

l c

0

1

2

3

4

5

6

ε
0 5 10 15 20

Ξw, p > pc(L))

(b.1)

0.
02

0.
23 0.
5

0.
71

0.
97

1.
31

1.
84

2.
73

4.
62

(p)

0.02

0.23

0.5

0.71

0.97

1.31

1.84

2.73

4.62

′ (p
)

0

100

200

300

400

500

600

700

800

min(lc,val)
lc,train
lc,val

l c

1.5

2

2.5

3

3.5

4

ε
0 5 10 15 20

Ξn, p > pc(L)

(b.2)
0.65 2.08 3.62 5.2 6.66

(p)

0.65

2.08

3.62

5.2

6.66

′ (p
)

25

50

75

100

125

150

175

200 min(lc,val)
lc,train
lc,val

l c

0

2

4

6

8

10

ε
0 5 10 15 20

FIG. 7. Confusion matrices and losses lr,train and lr,val for the classification results when using the correlation-function-
relabeled Ξw and Ξn data sets. The left column (a) shows the case p < pc while the right column (b) gives the outcome for
p > pc. The upper row corresponds to 10000 states for each class with 12 classes for p < pc and 18 at p > pc for Ξw. In the
lower row, there are 3560 states for the 6 classes when p < pc and 3077 states for 5 classes when p > pc.

(a)

trained
not	trained

〈	ξ
'	〉

0

1

3

4

〈	ξ	〉0 2 6 8
(b)

min(lr,val)
lr,train
lr,val

l r

0

0.25

0.5

0.75

1

1.25

1.5

ε
0 5 10 15 20

FIG. 8. (a) Average predictions for regression according to
ξ. The dataset used is the test data τ and the models used
for predictions are those corresponding with a minimal lc,val.
(b) Dependence of losses lr,train and lr,val on the number of
epochs ε for regression according to ξ. We follow the same
convention as in Fig. 4.

E. Classification with the spanning or
non-spanning properties

As discussed earlier, the hallmark of the percolation
transition is the existence of a spanning cluster which de-
termines whether the system is percolating or not [14]. In
the previous section, our DL approach has classified ac-
cording to p or ξ values without testing whether spanning
clusters actually exist. We now want to check this and
label all states according to whether they are spanning or
non-spanning. From Fig. 1, it is immediately clear that
for finite-sized systems considered here, there are a non-

negligible number of states with appear already spanning
even when p < pc and, vice versa, are still non-spanning
when p > pc. Furthermore, we note that for such L, the
difference between pc and pc(L) is large enough to be im-
portant and we hence use pc(L) as the appropriate value
to distinguish the two phases.

Figure 9 shows the average results after ε = 20
with an validation loss of minε[〈lc,val〉] = 0.165 ±
0.001 (corresponding to a maximal validation accuracy
maxε[〈ac,val〉] = 92.702% ± 0.001). At first glance, the
figure seems to indicate a great success: from the 31000
states present in τ , 11510.6 have been correctly classified
as non-spanning (i.e., N → N ′), and 17205.9 as spanning
(S → S′) while only 1223.1 are wrongly labeled as non-
spanning (S → N ′) and 1059.41 as spanning (N → S′)
[35]. Overall, we would conclude that 92.6% of all test
states are correctly classified while 7.4% are wrong. How-
ever, from the full percolation analysis for T ∪ V shown
in Fig. 1, we know that there are 92.7% of states with-
out a spanning cluster below pc(L) while 7.3% of states,
equivalent to 876 samples, already contain a spanning
cluster. Similarly, for p > pc(L), 94.8% of states, equiv-
alent to 936 samples, are spanning and 5.2% are not. At
pc(L) = 0.585, we furthermore have 518 spanning and
482 non-spanning states. Hence in total, we expect 2812
wrongly classified states. Since the last number is deci-
sively close to the actual number of 2282.5 of misclas-
sified states, this suggests that it is precisely the span-
ning states below pc(L) and the non-spanning ones above
pc(L) which the DL network is unable to recognize. Let
us rephrase for clarity: it seems that the DL CNN, when



7

(a)

N S

True

N
′

S′Pr
ed
ic
te
d 11510.6 1223.1

1059.4 17205.9 5000

10000

15000

(b)

min(lc,val)
lc,train
lc,val

l c

0

0.1

0.3

0.4

ε
0 5 10 15 20

FIG. 9. (a) Average confusion matrix for classification ac-
cording to spanning/non-spanning. The dataset used is the
test data τ and the models used for predictions are those cor-
responding with a minimal lc,val. The true labels for N and
S, are indicated on the horizontal axis while the predicted
labels are given on the vertical axis. (b) Dependence of losses
lc,train and lc,val on the number of epochs ε for classification
according to spanning/non-spanning. Again, we follow the
same convention as for Figs. 3, 7, and 5

trained in whether a cluster is spanning or non-spanning,
completely disregards this information in its classification
outputs.

F. Density-resolved study of
spanning/non-spanning close to pc(L)

In order to understand the behavior observed in the
last section, we now reexamine the result of Fig. 9 by an-
alyzing the ML-predicted probabilities, PML(p). In Fig.
10, we show both PML(p) as well as P (p); the latter hav-
ing been obtained by the Hoshen-Kopelman algorithm,
cf. Fig. 1(a). While the P (p) and PML(p) curves — and
of course also the corresponding Q(p) and QML(p) — ap-
pear qualitatively similar, they are nevertheless not iden-
tical and the slopes of PML(p), QML(p) are different. We
emphasize that the slopes are important for determin-
ing the universality class of a second-order phase transi-
tion via finite-size scaling [36]. Since we know for each
image whether it percolates or not, we can also check
how well the ML predictions worked by considering the
covariance. Let ζ(ψi(p)) = 0 when there is no perco-
lating cluster in the state ψi(p) while ζ(ψi(p)) = 1 if
there is. Similarly, we define ζML(ψi(p)) for the pre-
diction by the DL network. Then cov(ζ, ζML)(p) mea-
sures the covariance of states being found to span by
percolation and by ML for given p. In Fig. 10(b) we
show the normalized result, i.e., the Pearson coefficient
rζ,ζML

(p) = cov(ζ, ζML)(p)/[σζ(p)σζML
(p)], where σζ and

σζML
are the standard deviations of the percolation re-

sults and the ML predictions. We see that in the tran-
sition region, rζ,ζML

. 0.12 which is very far from the
maximally possible value 1. This suggest that while the
ML predictions are not simply random, they are also not
very much better than random.

Let us now study the classification into spanning/non-

(a)

N
S
NML
SML
pc(∞)
pc,finite

P(
p)
,Q
(p
)

0

0.2

0.8

1

p
0.54 0.56 0.58 0.6 0.62 0.64

(b)
r

0

0.025

0.05

0.075

0.1

0.125

p
0.56 0.58 0.6 0.62

FIG. 10. (a) The blue curve (red curve) shows the probabil-
ity to have a spanning (non-spanning) sample in the training
dataset. The cyan (orange) curve gives us the prediction of
probability to have a spanning (non-spanning) sample, ac-
cording to the trained network. (b) Dependence of the Pear-
son correlation coefficient r on the density p for classification
according to spanning/non-spanning. The confidence interval
is indicated in gray. In both (a) and (b), The lines connecting
the symbols are only a guide to the eye.

spanning states in detail for each p. Figure 11 and
Table I show a comparison of the classification for the
ten p values 0.56 to 0.605. We see, e.g., that
for p = 0.56, 0.565, 0.57, 0.575 < pc(L) ∼ 0.58, 0.585,
485 of 487 samples, which are already spanning, have
been misclassified as non-spanning. Similarly, for p =
0.59, 0.595, 0.6, 0.605 > pc(L), 7545.9 of in total 864 still
non-spanning samples are classified as spanning. These
results are similar whether one considers a typical sample
or the averaged result. Hence, contrary to the supposed
success of Fig. 9, we now find that the seemingly few
misclassified states of Fig. 9 are indeed precisely those
which represent the correct physics. Saying it differently,
the ML process seems to have led to a DL network which
largely disregards the characteristic of spanning clusters
and just uses the overall density of occupied vs. non-
occupied sites to ascertain the phases. Of course, this is
the wrong physics when considering percolation.



8

(a)

p < pc

p = 0.56 p = 0.57

N S
True

N
′

S′Pr
ed
ic
te
d 952

0

48

0

N S
True

N
′

S′Pr
ed
ic
te
d 871.2

0.5

126.5

1.8

p = 0.565 p = 0.575

N S
True

N
′

S′Pr
ed
ic
te
d 912.6

0

87

0.4

N S
True

N
′

S′Pr
ed
ic
te
d 756.9

6.5

223.5

13.1

(b)

p ∼ pc

p = 0.58

N S
True

N
′

S′Pr
ed
ic
te
d 590.3

51

303

55.7

p = 0.585

N S
True

N
′

S′Pr
ed
ic
te
d 336.5

218.8

263.2

181.5

(c)

p > pc

p = 0.59 p = 0.6

N S
True

N
′

S′Pr
ed
ic
te
d 101

512.8

107.2

279

N S
True

N
′

S′Pr
ed
ic
te
d 2

824.9

6.1

167

p = 0.595 p = 0.605

N S
True

N
′

S′Pr
ed
ic
te
d 15

737.1

30.9

217

N S
True

N
′

S′Pr
ed
ic
te
d 0.1

916.3

0.7

82.9

FIG. 11. Confusion matrices showing the predictions of the trained network Fig. 9 in a region p = [0.56, 0.605] comprising
pc, with (a) for predictions made before the percolation threshold, (b) in the threshold region and (c) after the percolation
threshold. Each confusion matrix is an average of the predictions made by the 10 trained models shown in Fig. 9.

N S (S → S′) (S → N ′) (N → S′) (N → N ′)
p n # % # % 〈#〉 〈%〉 〈#〉 〈%〉 〈#〉 〈%〉 〈#〉 〈%〉
0.56 1000 952 95.2 48 4.8 0.0 0.0 48.0 4.8 0.0 0.0 952.0 95.2
0.565 1000 913 91.3 87 8.7 0.0 0.0 87.0 8.7 0.4 0.0 912.6 91.3
0.57 1000 873 87.3 127 12.7 0.5 0.1 126.5 12.7 1.8 0.2 871.2 87.1
0.575 1000 770 77.0 230 23.0 6.5 0.7 223.5 22.4 13.1 1.3 756.9 75.7
0.58 1000 646 64.6 354 35.4 51.0 5.1 303.0 30.3 55.7 5.6 590.3 59.0
0.585 1000 518 51.8 482 48.2 218.8 21.9 263.2 26.3 181.5 18.2 336.5 33.6
0.59 1000 380 38.0 620 62.0 512.8 51.3 107.2 10.7 279.0 27.9 101.0 10.1
0.595 1000 232 23.2 768 76.8 737.1 73.7 30.9 3.1 217.0 21.7 15.0 1.5
0.60 1000 169 16.9 831 83.1 824.9 82.5 6.1 0.6 167.0 16.7 2.0 0.2
0.605 1000 83 8.3 917 91.7 916.3 91.6 0.7 0.1 82.9 8.3 0.1 0.0

TABLE I. Predictions of the trained network on the test data set τ for p ∈ [0.56, 0.605]. N and S denote the respectively the
number of non-spanning and the number of spanning samples in φ. The four following columns (S → S′), (S → N ′), (N → S′),
and (N → N ′) gives the averaging of 10 independent prediction runs.

G. Testing the accuracy of the DL network

The difficulties that the trained DL network has with
recognizing whether a state contains a percolating clus-
ter or not can be made more explicit. In section II D,
we had generated three test sets τS for this purpose.
Namely, percolating states even for p < pc(L) by adding
(i) a straight line and (ii) a random walk of connecting
sites as well as for p > pc(L) (iii) the firebreak states
of percolation-prohibiting random unoccupied sites. We
now use these sets and feed them independently as test
sets to the DL network. Figure 12 shows the three con-
fusion matrices obtained when classifying for spanning
vs. non-spanning. In Fig. 12(a+b), we see that the net-
work completely misclassifies the spanning datasets τSl
and τrw. The two correctly identified non-spanning im-
ages are just the two such states added to each of the
data sets to show that the network is still performing.
Similarly, in Fig. 12(c), we see that this time the net-

work cannot correctly identify the non-spanning samples
in τfb. Again, the two samples correctly identified are the
ones without the firebreak.

IV. CONCLUSIONS

Let us briefly summarize what we have achieved thus
far. We showed that when looking at p, classification
and regression techniques for percolation states allow us
to obtain good recognition with near-perfect 〈ac,val〉 =
99.323%±0.003) for classification and near-zero 〈lr,val〉 =
0.000062± 0.000012 average mean-square loss for regres-
sion. Confusion matrices are heavily diagonal for classifi-
cation while prediction curves for regression are similarly
convincing. These results are in good agreement with
previous similar such studies [15, 16, 37], which should
not come as a surprise: the information about p is of
course directly enclosed in each state. We emphasize that



9

(a)

N S

True
N
′

S′Pr
ed
ic
te
d 2 8311.6

0 16688.4

0

5000

10000

15000

(b)

N S

True

N
′

S′Pr
ed
ic
te
d 2 8203.4

0 16796.6

0

5000

10000

15000

(c)

N S

True

N
′

S′Pr
ed
ic
te
d 7978.6 0

17021.4 2

0

5000

10000

15000

FIG. 12. Sample states for the three special test sets (a) τsl with added straight spanning lines, (b) τrw with spanning random
walks and (c) τfb with the non-spanning firebreaks. In each case, the right plots gives the confusions matrices obtained from
the DL model previously trained in a spannin vs. non-spanning classification. In all cases, the density is strictly p = 0.5.

our approach is already somewhat more challenging than
these previous works since instead of just asking the DL
network to identify the two phases p < pc and p > pc, we
also successfully identify all 31 distinct densities p. Using
〈ξ(p)〉 instead of p to identify the 31 densities also works
quite well, but is again expected since 〈ξ(p)〉 merely acts
as a new set of supervised labels.

Problems emerge when we use the computed correla-
tion length ξ for each state and try classification and
regression with these correlation lengths. Having thus
explicitly removed any connection with the p values, we
nevertheless find that the resulting confusion matrices,
fidelity curves and losses are all of much less quality than
before. Instead, it seems that the density p information
is still the overriding measure used by the DL network to
arrive at its outputs (cf. Figs. 7 and 8) [38]. Rather, as
we show in sections III E–G, the DL network completely
ignores whether a cluster is spanning or non-spanning,
essentially missing the underlying physics of the percola-
tion problem — it seems to still use p as its main ordering
measure.

We believe that the root cause of the failure to identify
the spanning clusters, or their absence, lies in the fun-
damentally local nature of the CNN: the filter/kernels
employed in the ResNets span a few local sites only
[39]. Hence it is not entirely surprising that such a CNN
cannot correctly identify the essentially global nature of
spanning clusters. But it is of course exactly this global
percolation that leads to the phase transition.

The reader might wonder why previous CNN studies
of phases in other models, such as, e.g., the Ising-type
models [9], the three-dimensional Anderson model and

its topological variants [10], have failed to find similar
such issues. We think that this is because in the Ising
case, the majority rule for spin alignment is not con-
cerned with any globally spanning domain [40], while in
the Anderson-type models, it is the (typical) local den-
sity of states which can serve as order parameter [41]. In
short, in these models a local property is indeed sufficient
to distinguish their phases.

Of course ML aficionados might now want to suggest
that extensions of local kernels are possible in CNNs. In-
deed, one might, e.g., want to use CNNs in which large
dilution parameters are employed to effectively make fil-
ters/kernels of manageable size while still spanning across
a sizeable portion of the L × L size of each percolation
state [42]. But while this might solve the issue for fixed
L in the percolation case — we have not tested it — it
does imply knowing that a global property is important
to start with. This would rather diminish the relevance
of DL as a tool for unbiased discovery in physics.

ACKNOWLEDGMENTS

We thank B. Çivitcioğlu, M. Hilke, and T. Ohtsuki for
discussions. D.B. is grateful for co-tutelle funding via the
EUtopia Alliance. We gratefully acknowledge the Uni-
versity of Warwick Research Technology Platform (RTP
Scientific Computing) and the Sulis Tier 2 HPC platform
hosted by the RTP. Sulis is funded by EPSRC Grant
EP/T022108/1 and the HPC Midlands+ consortium.

[1] K. He, X. Zhang, S. Ren, and J. Sun, in 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Vol. 2016-Decem (IEEE, 2016) pp. 770–778.

[2] M. A. Tabak, M. S. Norouzzadeh, D. W. Wolfson, S. J.
Sweeney, K. C. Vercauteren, N. P. Snow, J. M. Halseth,
P. A. Di Salvo, J. S. Lewis, M. D. White, B. Teton, J. C.
Beasley, P. E. Schlichting, R. K. Boughton, B. Wight,
E. S. Newkirk, J. S. Ivan, E. A. Odell, R. K. Brook,
P. M. Lukacs, A. K. Moeller, E. G. Mandeville, J. Clune,
and R. S. Miller, Methods in Ecology and Evolution 10,
585 (2019).

[3] R. Zhang, Q. Wang, and Y. Lu, in 2017 14th IAPR In-
ternational Conference on Document Analysis and Recog-
nition (ICDAR) (IEEE, 2017) pp. 25–29.

[4] Y. Zhao and M. Khushi, in 2020 International Conference
on Data Mining Workshops (ICDMW), Vol. 2020-Novem
(IEEE, 2020) pp. 385–391.

[5] Y. Nomura, A. S. Darmawan, Y. Yamaji, and M. Imada,
Phys. Rev. B 96, 205152 (2017).

[6] W.-J. Rao, J. Phys.: Condens. Matter 30, 395902 (2018).
[7] Y. Zhang and E.-A. Kim, Phys. Rev. Lett. 118, 216401

(2017).

http://dx.doi.org/ 10.1109/CVPR.2016.90
http://dx.doi.org/ 10.1109/CVPR.2016.90
http://dx.doi.org/ 10.1109/CVPR.2016.90
http://dx.doi.org/ 10.1111/2041-210X.13120
http://dx.doi.org/ 10.1111/2041-210X.13120
http://dx.doi.org/10.1109/ICDAR.2017.324
http://dx.doi.org/10.1109/ICDAR.2017.324
http://dx.doi.org/10.1109/ICDAR.2017.324
http://dx.doi.org/10.1109/ICDMW51313.2020.00060
http://dx.doi.org/10.1109/ICDMW51313.2020.00060
http://dx.doi.org/10.1103/PhysRevB.96.205152
http://dx.doi.org/10.1088/1361-648X/aaddc6
http://dx.doi.org/10.1103/PhysRevLett.118.216401
http://dx.doi.org/10.1103/PhysRevLett.118.216401


10

[8] E. M. Stoudenmire and D. J. Schwab, Advances in Neural
Information Processing (2017).

[9] J. Carrasquilla and R. G. Melko, Nature Physics 13, 431
(2017).

[10] T. Ohtsuki and T. Mano, J. Phys. Soc. Jpn. 89, 022001
(2020).

[11] K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami,
Phys. Rev. X 7, 031038 (2017).

[12] J. Venderley, V. Khemani, and E.-A. Kim, Phys. Rev.
Lett. 120, 257204 (2018).

[13] S. R. Broadbent and J. M. Hammersley, Mathematical
Proceedings of the Cambridge Philosophical Society 53,
629 (1957).

[14] D. Stauffer and A. Aharony, Introduction to Percolation
Theory , 2nd ed. (Taylor & Francis Group, 1991).

[15] W. Zhang, J. Liu, and T.-C. Wei, Phys. Rev. E 99,
032142 (2019).

[16] J. Shen, W. Li, S. Deng, and T. Zhang, Phys. Rev. E
103, 052140 (2021).

[17] S. Patwardhan, U. Majumder, A. D. Sarma, M. Pal,
D. Dwivedi, and P. K. Panigrahi, “Machine learning as
an accurate predictor for percolation threshold of diverse
networks,” (2022), arXiv:2212.14694 [physics.soc-ph].

[18] W. Yu and P. Lyu, Physica A 559, 125065 (2020).
[19] R. J. Elliott, B. R. Heap, D. J. Morgan, and G. S. Rush-

brooke, Phys. Rev. Lett. 5, 366 (1960).
[20] P. J. Flory, Principles of Polymer Chemistry (Cornell

University Press, 1953).
[21] B. Derrida and D. Stauffer, Journal de physique Paris

46, 1623 (1985).
[22] G. Grimmett, Percolation (Springer Verlag, Berlin,

1989).
[23] J. L. Jacobsen, J. Phys. A: Math. Theor. 47, 135001

(2014).
[24] J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438

(1976).
[25] We have checked that our results do not change when

using the gray scales. Furthermore, the full cluster in-
formation is already coded in the spatial distribution of
these gray intensities, hence giving much information to
the DNNs.

[26] P. Mehta, M. Bukov, C. H. Wang, A. G. Day, C. Richard-
son, C. K. Fisher, and D. J. Schwab, Phys. Rep. 810, 1
(2019).

[27] A. Dawid, J. Arnold, B. Requena, A. Gresch, M. Podzie,
K. Donatella, K. A. Nicoli, P. Stornati, R. Koch, M. Bt-
tner, R. Okua, G. Muoz-Gil, R. A. Vargas-Hernndez,
A. Cervera-Lierta, J. Carrasquilla, V. Dunjko, M. Gabri,
P. Huembeli, E. van Nieuwenburg, F. Vicentini, L. Wang,
S. J. Wetzel, G. Carleo, E. Greplov, R. Krems, F. Mar-
quardt, M. Tomza, M. Lewenstein, and A. Dauphin,
“Modern applications of machine learning in quantum
sciences,” (2022), arXiv:2204.04198 [quant-ph].

[28] E. Bedolla, L. C. Padierna, and R. Castaeda-Priego, J.
Phys.: Condens. Matter 33, 053001 (2020).

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, 2009 IEEE Conference on Computer Vision and Pat-
tern Recognition , 248 (2009).

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, Advances in Neural Information Pro-
cessing Systems 32 (2019).

[31] “SciKit-Learn 1.2.2: 1.17. Neural network models (super-
vised),” (2023).

[32] M. D. Zeiler, “ADADELTA: An adaptive learning rate
method,” (2012), arXiv:1212.5701 [cs.LG].

[33] We also optimized other hyperparameters and tested
other optimizers such as ADAM but found no significant
performance improvement.

[34] “Kaggle competition “Dogs vs. Cats”: Create an algo-
rithm to distinguish dogs from cats,” (2012).

[35] We note that these numbers are not integers since they
are computed as averages over the 10 independent train-
ing runs as mentioned in section II C.

[36] T. R. Kirkpatrick and D. Belitz, J. Phys.: Condens. Mat-
ter 4, L37 (1992).

[37] S. Cheng, F. He, H. Zhang, K.-D. Zhu, and
Y. Shi, “Machine learning percolation model,” (2021),
arXiv:2101.08928 [cond-mat.dis-nn].

[38] We emphasize that we have spent considerable effort at
making sure that this result is not due to erroneous in-
formation leakage [27].

[39] In addition to the ResNet18 used in the main text, we
have also checked that ResNet34 yields a similar out-
come.

[40] B. M. McCoy and T. T. Wu, The Two-Dimensional Ising
Model (Harvard University Press, 1973).

[41] V. Dobrosavljević, A. A. Pastor, and B. K. Nikolić, Eu-
rophys. Lett. 62, 76 (2003).

[42] M. Al-Shabi, H. K. Lee, and M. Tan, IEEE Access 7,
178827 (2019).

http://www.aics.riken.jp/labs/cms/workshop/20170324/presentation/miles.pdf
http://www.aics.riken.jp/labs/cms/workshop/20170324/presentation/miles.pdf
http://dx.doi.org/10.1038/nphys4035
http://dx.doi.org/10.1038/nphys4035
http://dx.doi.org/10.7566/JPSJ.89.022001
http://dx.doi.org/10.7566/JPSJ.89.022001
http://dx.doi.org/10.1103/PhysRevX.7.031038
http://dx.doi.org/10.1103/PhysRevLett.120.257204
http://dx.doi.org/10.1103/PhysRevLett.120.257204
http://dx.doi.org/DOI: 10.1017/S0305004100032680
http://dx.doi.org/DOI: 10.1017/S0305004100032680
http://dx.doi.org/DOI: 10.1017/S0305004100032680
http://dx.doi.org/10.4324/9780203211595
http://dx.doi.org/10.4324/9780203211595
http://dx.doi.org/10.1103/PhysRevE.99.032142
http://dx.doi.org/10.1103/PhysRevE.99.032142
http://dx.doi.org/ 10.1103/PhysRevE.103.052140
http://dx.doi.org/ 10.1103/PhysRevE.103.052140
http://arxiv.org/abs/2212.14694
http://dx.doi.org/10.1016/J.PHYSA.2020.125065
http://dx.doi.org/10.1103/PhysRevLett.5.366
https://books.google.fr/books/about/Principles_of_Polymer_Chemistry.html?id=CQ0EbEkT5R0C&redir_esc=y
http://dx.doi.org/10.1051/jphys:0198500460100162300
http://dx.doi.org/10.1051/jphys:0198500460100162300
https://link.springer.com/book/10.1007/978-3-662-03981-6
http://dx.doi.org/10.1088/1751-8113/47/13/135001
http://dx.doi.org/10.1088/1751-8113/47/13/135001
http://dx.doi.org/10.1103/PhysRevB.14.3438
http://dx.doi.org/10.1103/PhysRevB.14.3438
http://dx.doi.org/ 10.1016/j.physrep.2019.03.001
http://dx.doi.org/ 10.1016/j.physrep.2019.03.001
http://arxiv.org/abs/2204.04198
http://dx.doi.org/10.1088/1361-648X/abb895
http://dx.doi.org/10.1088/1361-648X/abb895
https://scikit-learn.org/stable/modules /neural_networks_supervised.html#regression
https://scikit-learn.org/stable/modules /neural_networks_supervised.html#regression
http://arxiv.org/abs/1212.5701
https://www.kaggle.com/competitions/dogs-vs-cats/leaderboard
https://www.kaggle.com/competitions/dogs-vs-cats/leaderboard
http://dx.doi.org/10.1088/0953-8984/4/1/009
http://dx.doi.org/10.1088/0953-8984/4/1/009
http://arxiv.org/abs/2101.08928
http://dx.doi.org/10.4159/HARVARD.9780674180758/HTML
http://dx.doi.org/10.4159/HARVARD.9780674180758/HTML
http://dx.doi.org/10.1209/epl/i2003-00364-5
http://dx.doi.org/10.1209/epl/i2003-00364-5
http://dx.doi.org/10.1109/ACCESS.2019.2958663
http://dx.doi.org/10.1109/ACCESS.2019.2958663

