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Detection of phase transitions is a critical task in statistical physics, traditionally pursued through
analytic methods and direct numerical simulations. Recently, machine-learning techniques have
emerged as promising tools in this context, with a particular focus on supervised and unsupervised
learning methods, along with non-learning approaches. In this work, we study the performance
of unsupervised learning in detecting phase transitions in the J1-J2 Ising model on the square
lattice. The model is chosen due to its simplicity and complexity, thus providing an understanding
of the application of machine-learning techniques in both straightforward and challenging scenarios.
We propose a simple method based on a direct comparison of configurations. The reconstruction
error, defined as the mean-squared distance between two configurations, is used to determine the
critical temperatures. The results from the comparison of configurations are contrasted with that
of the configurations generated by variational autoencoders. Our findings highlight that for certain
systems, a simpler method can yield results comparable to more complex neural networks. This work
contributes to the broader understanding of machine-learning applications in statistical physics and
introduces an efficient approach to the detection of phase transitions using machine determination
techniques.

I. INTRODUCTION

Identification of critical points separating distinct
phases of matter is a central pursuit in condensed matter
and statistical physics [1, 2]. This task requires a thor-
ough understanding of the global behavior of the many-
body system because phenomena may emerge that are
very difficult to derive from microscopic rules [3]. Tradi-
tional analytic methods and numerical simulations have
proven effective in understanding these complex systems
[4], but they often come with limitations, particularly in
high-dimensional parameter space [5].

Machine-learning (ML) methods, particularly super-
vised [6] and unsupervised learning techniques [7], have
in the last years appeared in physics as a novel strat-
egy to bypassing some of these limitations [8, 9]. They
have been shown to yield promising predictions in iden-
tifying critical points or phases in parameter space [10–
16], providing an alternative and potentially more effi-
cient way of exploring complex systems. In particular
supervised machine-learning methods have been shown
to be capable of identifying different phases of a physical
system [10–16]. Subsequently, several strategies, includ-
ing but not limited to anomaly detection [17–24], were
demonstrated to be able to reconstruct the outlines of
a system’s phase diagram within unsupervised learning
and semi-unsupervised learning contexts. The potential
to identify structural changes within a system attracted
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further attention to these techniques in modern scientific
exploration [25, 26].

Among the various models studied in the context
of machine learning and statistical physics, the Ising
model on the square lattice has served as a benchmark
[10, 17, 19–21, 23, 27–40] due to its simplicity and the
ready availability of its exact solution [41–43]. Let us
also mention related work on multi-layer [44] and Potts
models [24, 45–49], where the latter include the Ising
model as the q = 2 case. Percolation can be considered
as the q → 1 limit of the Potts model [50] and yields
another class of models to which machine-learning tech-
niques have been applied [51–56].

The J1-J2 Ising model incorporates competing inter-
actions across the diagonals of the squares and presents
a more challenging case than the aforementioned ones.
Investigations of this model have a long history in sta-
tistical physics [57–84]. It was observed early on [57, 58]
that, with J1 denoting the nearest-neighbor interaction,
the competing second-neighbor interaction J2 gradually
suppresses the ordering temperature, until it vanishes
completely when J2 = |J1| /2. Furthermore, beyond
this point, a new ordered phase called the “superanti-
ferromagnetic phase” appears. The universality class of
the transition into the superantiferromagnetic phase has
been investigated early on [57, 60], but continues to at-
tract attention [61, 63–66, 68–75, 79–81, 84] since its na-
ture remains controversial. There is at least also one
investigation of this model on the D-wave quantum an-
nealer [85] and a small number of machine-learning in-
vestigations [22, 36].

In this work, we focus on the square-lattice J1-J2
Ising model, using machine-learning techniques to predict
phase transitions and construct the phase diagram. We
adopt the approach of detecting criticality based on the
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FIG. 1. Schematic representation of the J1-J2 Ising model on
a 5×5 square lattice. The squares designate the classical spins
with black and white corresponding to up and down states,
respectively, chosen to illustrate one spin configuration. The
solid blue and dashed red lines denote the interactions of near-
est neighbors J1 and next-nearest neighbors J2, respectively.

reconstruction error (E), defined as the mean-squared dis-
tance between two spin configurations, by comparatively
using two machine determination methods [86]. The first
method is the Variational Autoencoder (VAE), a type
of neural network that reconstructs a given predicted
state after being trained on a selected set of states [87].
We use the TensorFlow interface to implement our VAE
[88]. The second machine-determination method is sim-
pler, based on using a configuration comparison (CMP)
and does not require training nor any bespoke machine-
learning tools. It is an interpretable method [34], i.e.
employs a fully explainable computational strategy. Such
methods are generally used both as benchmarks and as
practical alternatives to machine learning [89].

Our study aims to provide insights into the capabil-
ities of these computational methods in the context of
phase transition detection and we conclude that the sim-
pler method (CMP) can achieve success rates that can
be compared to that of the VAEs.

II. THE J1-J2 ISING MODEL

The J1-J2 Ising model serves as a simple but non-
trivial system to illustrate phase transitions, especially
those associated with magnetic behavior. As presented
in Fig. 1, it adds the complexity of second-nearest-
neighbor interactions to the traditional nearest-neighbor
Ising model. The Hamiltonian of the J1-J2 Ising model
is expressed as

HJ1J2
= −J1

∑
⟨i,j⟩

si sj + J2
∑

⟨⟨i,j⟩⟩

si sj . (1)

Here, si represents the spin at site i, which can be either
up (+1) or down (−1); ⟨i, j⟩ refers to nearest-neighbor
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FIG. 2. Phase diagram of the J1-J2 Ising model on the peri-
odic square lattice, with sample configurations from each of
the three phases shown. The top paramagnetic configuration
was obtained at J1 = 1, J2 = 0.1, and T = 4 > Tc. The bot-
tom left ferromagnetic configuration corresponds to J1 = 1,
J2 = 0.1, and T = 0.1 < Tc. The bottom right configuration
was found for J1 = 1, J2 = 0.8, and T = 0.1 < Tc. This con-
figuration illustrates the superantiferromagnetic phase. The
reference Tc data is based on Ref. [66] and shown by circles
connected by lines as guide for the eye. The five red stars
(∗) and their associated letters locate the (T, J2) positions for
selected configurations further detailed in Fig. 3.

pairs, ⟨⟨i, j⟩⟩ denotes next-nearest neighbor pairs, while
J1, J2 ≥ 0 signify the interaction strengths between the
nearest and next-nearest neighbors, respectively. The
sign convention of the Hamiltonian in Eq. (1) leads to
a ferromagnetic coupling for J1 pairs while next-nearest
neighbors prefer to align in an antiferromagnetic struc-
ture. Some previous investigations have used J1 < 0, but
this yields equivalent physics to the case J1 > 0 consid-
ered here, see appendix A for further details. We present
results in units of |J1| = 1 where the absolute value em-
phasizes that the structure of the phase diagram is the
same for both signs of J1. We investigate square lat-
tices of size L× L (linear extent L) and impose periodic
boundary conditions.

A. Phase diagram

Figure 2 recalls the well-studied phase diagram of the
J1-J2 Ising model. Here, we use the previously computed
high-precision transition temperatures Tc from Ref. [66]
for reference. Some more recent numerical investigations
such as Refs. [68, 69, 71, 75, 80, 84] may provide more ac-
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FIG. 3. (a-e) Five illustrative spin configurations of the J1-J2 Ising model on a periodic 30× 30 square lattice for (T, J2) values
as indicated in Fig. 2. (f-k) Predicted spin configurations from (a-e), respectively, using the VAEs from the in-phase training
cycles described in Sec. IVB. Panels (a, b, c) keep J2 = 0.1 fixed while increasing T from (a) ferromagnetic at T = 0.1 to
(b) T = 1.975 near the ferromagnetic-to-paramagnetic transition and (c) a configuration deep in the paramagnetic phase at
T = 4.0. Panels (d, e) have J2 = 0.8 and then decrease T from (d) T = 1.575 near the paramagnetic-to-superantiferromagnetic
transition to (e) a superantiferromagnetic configuration at T = 0.1. In (f-k), the parameters are as in (a-e), respectively. In all
cases, the black squares correspond to up spins while white is for down spins as in Fig. 1. In (f-k), the values in the interval
[−1, 1] are denoted by the gray squares in the panels.

curate estimates of the transition temperatures, but any
potential differences are so small that they are irrelevant
for the present purposes.

The J1-J2 Ising model exhibits three distinct phases
that we illustrate, by one representative spin configura-
tion each, in Fig. 2. The paramagnetic phase appears
at sufficiently high temperatures, namely T > Tc irre-
spective of the values of the interaction constants. This
phase is characterized by the absence of long-range or-
der. The next phase is the ferromagnetic one, charac-
terized by a preference of the neighboring spins to align.
In the T = 0 ground state, spins are perfectly aligned,
yielding an energy per site of eferro = −2 J1 + 2J2. The
finite-temperature phase transition to this ferromagnetic
phase starts at the exactly known value Tc,Ising/ |J1| =
2/ln(1 +

√
2) ≈ 2.269 for J2 = 0 [41] and is gradually

suppressed by a competing J2 > 0. The third and last
phase is known as the superantiferromagnetic phase [58].
Here, the J1 and J2 interactions compete: J1 prefers to
align nearest-neighbor spins parallel while J2 tries to en-
force an antiparallel alignment of next-nearest neighbor
spins. In the superantiferromagnetic state, either verti-
cal or horizontal stripes composed of opposing spins are
formed, thus satisfying all J2 interactions and half of the
J1 interactions. At T = 0, this order is perfect, yielding
an energy per site of esuper = −2 J2.

When J2 = |J1| /2 for T = 0, we find eferro = esuper,
i.e., the ground-state energies become degenerate, corre-
sponding to the transition point between ferromagnetic
and superantiferromagnetic phases. Numerical investi-
gations [66, 75, 80, 83] indicate that there is no finite-
temperature phase transition exactly at J2 = |J1| /2 and
that the critical temperature Tc is suppressed to Tc = 0

when approaching J2 = |J1| /2 from either ordered phase.
Figure 3 shows further examples of spin configurations,

emphasizing changes upon approaching the phase transi-
tion. Panels (a) and (e) show configurations at low tem-
peratures in the ferromagnetic and superantiferromag-
netic phase, respectively. These are similar to the config-
urations already shown in Fig. 2, except that in the su-
perantiferromagnetic case the stripes in the examples are
rotated by 90◦. Panels (b) and (d) of Fig. 3 show configu-
rations at higher temperatures, closer to the critical tem-
perature Tc. Here one observes fluctuations on top of the
ordered background. Finally, Fig. 3(c) shows another ex-
ample for a configuration in the high-temperature para-
magnetic phase.

B. Monte Carlo Method

To generate the necessary input data for the machine
determination models, we utilize the Metropolis algo-
rithm, a well-established method in the realm of compu-
tational physics for simulating thermal systems [90–93].
In the present investigation, we initially focus on a sys-

tem size of 30 × 30 with periodic boundary conditions.
This choice is motivated by the machine-learning frame-
works being tailored for images of similar size. Indeed,
previous related work [22, 86] for the J1-J2 Ising model on
the square and honeycomb lattices also employed L = 30.
In order to assess the influence of the size of the system,
we also investigate 60× 60 and 120× 120 square lattices,
again with periodic boundary conditions.
Equilibration of the simulations can be difficult, in

particular in the regime of J2 ≈ |J1| /2 [66]. In order
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to ensure proper thermalization within a simple single-
spin flip Metropolis scheme, we proceed as follows: we
fix J2/ |J1| and start from a high initial temperature
T/ |J1| = 100, where the spin configurations are essen-
tially random. Next, we gradually lower the temperature
to T/ |J1| = 4 over the course of 1000 Monte Carlo sweeps
(MC sweeps, i.e., complete L × L spin updates). Then
we start the data collection phase: for each T , we first
thermalize for another 3000 MC sweeps. Next, we collect
five spin configurations at a given T , spaced by 1000 MC
sweeps between each measurement to ensure the statisti-
cal independence of the configurations. Finally, temper-
ature is lowered by ∆T/ |J1| = 0.025 and the procedure
repeated, until we reach T/ |J1| = 0.1. This yields a set
T of |T | = 157 temperatures with T/ |J1| ∈ [0.1, 4] for
T ∈ T . The procedure is repeated with different random
numbers until we have C = 40 configurations for each
temperature at the given value of J2/ |J1|.
We then select another J2/ |J1| ∈ J2 and collect

spin configurations as above. Here, J2 denotes the set
J2 = {0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.48, 0.49, 0.495, 0.5,
0.505, 0.51, 0.52, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9, 1, 1.2, 1.5}
with |J2| = 22 distinct values. In total, this results in a
dataset containing |T |×|J2|×C = 157×22×40 = 138 160
independent configurations for a given system size. We
shall denote this global dataset as ρG. The examples
shown in Figs. 2 and 3 were taken from ρG. We note
that the configurations are stored in an exact numeric
form, and not as potentially lossy images, as the machine-
learning context might suggest [94].

III. MACHINE-LEARNING APPROACHES

The datasets described in the preceding section
will form the basis for two independent machine-
determination approaches to the phase diagram of the
J1-J2 Ising model. In principle, we would like to explore
fully unsupervised approaches, but we note that some
prior knowledge about the phase diagram goes into the
generation of the underlying dataset, namely the relevant
range of temperatures T and the required resolution of
coupling ratios J2/ |J1|.

We will employ two distinct computational methods:
the first approach follows Refs. [22, 86] and uses a deep-
learning model, viz. a variational autoencoder (VAE)
that produces a predicted output spin configuration for
each given input configuration. The second approach is
much simpler, namely just a direct comparison of config-
urations, but has to the best of our knowledge not been
implemented previously. The generated datasets will be
used, as shown in Fig. 4 (to be discussed in more detail
later in Sec. IVA), as the training data for the VAE and
the reference configurations for the direct comparison of
configurations. Consequently, the reconstruction errors
are computed, from which the phases can be identified.
Then as the final step in the workflow we estimate the
Tc’s for each J2 value.

Monte Carlo Simulation 

with Metropolis Algorithm

εϱGCMPVAE

ε(Si, So)

εmin
ρ (𝒯, J2) εmin

ρ (𝒯, J2)

max [ ∂ε
∂T ]

T* T*

VAE
CMP
T*

FIG. 4. Workflows of the two machine-“learning” approaches
implemented in the present work: We begin with an input
dataset that is processed in the first approach by a VAE to
generate a reconstructed set of configurations. In the second
approach, we compare the input images against some refer-
ence configurations (CMP). For both pathways, we calculate
the “reconstruction error” E for each configuration, resulting
in a set of reconstruction error distributions. By analyzing the
derivative of the distribution, we finally pinpoint the temper-
ature T∗ with the largest derivative as the predicted critical
temperature Tc for a given value of J2/ |J1|.

A. Variational Autoencoder

A VAE is a relatively recent deep-learning architecture
that combines standard compression techniques with the
regularization strategies of machine learning, serving also
as a generative model [87, 95]. In brief, it consists of an
encoding multilayered neural network that, upon train-
ing with input data, produces output parameters for a
variational distribution. These parameters characterize a
low-dimensional probabilistic distribution space, known
as latent space. The decoding part of the VAE then is
again a deep neural network architecture that generates
the reconstructed output data from the latent space, tak-
ing samples from the latent space rather than determin-
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FIG. 5. Network architecture of the variational autoencoder for the 30× 30 lattice. The encoder consists of two convolutional
layers with 32 and 64 filters, ReLu activation function, and padding, followed by a flattening layer and a dense layer with 16
units. The dense layer outputs the mean and log-variance parameters to the latent space, from which the latent vector z is
sampled. The decoder, starting with a dense layer and a reshape layer, uses transposed convolutional layers to reconstruct the
input image from z. The final layer applies a sigmoid activation function to produce output values between 0 and 1, which are
then rescaled to the interval [−1, 1].

istic points. Clearly, when the dimension d of the latent
space is much smaller than the information content of the
input data, this procedure will lead to some information
loss. Hence, one is trying to construct en- and decoders
such that upon encoding a maximum of information is
kept while upon decoding a minimum of error is intro-
duced into the output data. In order to optimally train
the model to generate such a VAE, two loss measures
are employed. The reconstruction error ε (see Sec. III B
for details) quantifies the difference between input and
output data upon training. In addition, the so-called
Kullback-Leibler divergence [96] assures the regulariza-
tion of the latent space, making it approximate standard
normal distributions [87]. In practice, during training one
minimizes a total loss ℓ that combines the reconstruction
loss ℓε in the final layer from ε as well a Kullback-Leibler
loss ℓKL [87], such that ℓ = ℓε+c ℓKL, where c a constant.
We have tried different values of c ∈ {1 . . . 10} and ob-
served that it does not yield any notable changes in the
results, therefore we fix c = 1.

In the present case, our input data consists of spin con-
figurations with dimensions (L,L, 1) with a simple ±1
binary value for each of the L2 spins. This is similar to
standard black-and-white images, in particular after nor-
mal batch-normalization operations in the encoding [97].
Hence, we are using in the following the same regulariza-
tion strategy as used in VAEs for image reconstructions
(ImageNet [98]). We have also checked that a latent
space dimension up to d = 8 reproduces similar results,
but we find that d = 2, as shown in Fig. 5, is sufficient
and often better in distinguishing phases. We suggest
that this is due to the relatively small number of phases
for the J1-J2 model. We note that d = 2 has also been
used with good accuracy in the MNIST ten-numerals-

recognition challenge [99, 100].

Figure 5 shows the architecture of the VAE, inspired
by Refs. [22, 86], for a 30 × 30 lattice. For the other
input sizes L = 60 and 100, our network architecture
has the same structure, but with size-adjusted parame-
ters. In order to keep the parameters padding, kernel size
and stride for L = 120 the same as for L = 30 and 60,
we add a third convolutional layer. The network archi-
tecture for L = 30 begins with two convolutional layers
with 32 and 64 filters, respectively, each with a 3×3 ker-
nel size and a stride of 2. Both layers apply a rectifier
linear unit or ReLu activation function that is defined
as ReLU(x) = max(0, x) and use padding to preserve
spatial dimensions. After these convolutional layers, a
flattening layer reshapes the 3D output into a 1D tensor,
which then feeds into a dense layer with 16 units and
again ReLU activation. This layer prepares the data for
conversion into the latent space. The final two layers of
the encoder output two parameters: the mean, µ, and the
log-variance, log σ2, of the latent space. These parame-
ters define a Gaussian distribution, from which we sample
using the parameterization trick [87]. The decoder then
aims to reconstruct the input spin configuration (image)
from the compressed information in the latent space. The
architecture of the decoder starts with a dense layer that
up-samples to dimensions of 5 × 5 × 64 (= 1600). A re-
shape layer follows, converting the 1D tensor back into
a 3D tensor. After this, two sets of transposed convo-
lutional layers with 64 and 32 filters, respectively, are
applied, each with a 3 × 3 kernel size and ReLU activa-
tion. The first has a stride of 2 and the second has a
stride of 3, and both utilize padding. The final layer of
the decoder uses another transposed convolutional layer
with one filter to generate the output image, applying
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the sigmoid activation to ensure that the output values
fall within the range between 0 and 1. More details on
the structure and performance of the latent space can be
found in Ref. [101].

B. Reconstruction error

The typical reconstruction error used in many image-
based VAE applications is known as “mean-squared er-
ror” (MSE) and is defined as

ε(Si,So) =
1

4L2

L2∑
l=1

(si,l − so,l)
2 , (2)

where Si = {si,l} and So = {so,l} correspond to the input
and output configurations of the VAE, respectively. For
two identical spin configurations, So = Si, we obviously
have ε = 0. For two opposite configurations, So = −Si,
we find ε = 1 while for two configurations with half the
spins identical and half opposite, we have ε = 0.5. The
latter value is also true when comparing two independent
and identically distributed, i.e., random, spin configura-
tions, at least when L → ∞. We note that in (2), the
factor 4 in the denominator assures that the ε are nor-
malized similar to the standard results for MSEs where
usually comparisons are for values ranging from 0 to 1,
whereas in the present case the range is [−1, 1]. While
the spin configurations computed for the J1-J2 model are
restricted to values ±1, no such restriction is in place for
the output generated by the VAE and the possible range
of so,l is [−1, 1]. Therefore, in principle all values ∈ [0, 1]
are possible when computing ε between a spin configura-
tion Si computed from the J1-J2 model, and So, recon-
structed via the VAE. In particular, if the VAE would
produce a completely featureless configuration so,l = 0
for all l in the L×L lattice, then we would have ε = 0.25.
Often, we shall be interested in reconstruction errors

originating from differently trained VAEs. For example,
we might be interested in selecting a certain smaller re-
gion ρ of the (T ,J2) parameter space as the space from
where the input spin configurations Si, used in the train-
ing of a VAE, originate. We shall then use ερ to de-
note that particular training. Furthermore, when test-
ing a particular VAE, we will do so at specific T and
J2 values. We note that while we use the term testing
in the technical ML sense, its physics use is in produc-
ing reconstruction errors ερ(T, J2) to allow phase recon-

struction. In principle, there is one such ε
(c)
ρ (T, J2) value

for each spin configuration c of the C = 40 configura-
tions constructed at each point (T, J2) as discussed in
section II B. Hence it is at this point that a statistical
analysis can be applied, e.g., construct mean and mini-

mal estimates, i.e., ⟨ερ⟩(T, J2) =
∑C

c=1 ε
(c)
ρ (T, J2)/C and

min(ερ)(T, J2) = min{ε(c)ρ (T, J2) | c ∈ C}. We note
that in computing these statistical estimates – and their
standard errors used later – we do not also change the

underlying input configurations as obtained from Monte-
Carlo.
Sets of reconstruction errors shall be denoted E , with

Eρ(J2) =
{
{T, ερ(T, J2)} | T ∈ T

}
(3)

denoting the set of all reconstruction errors at constant
J2 computed for a VAE trained on region ρ. Here, when
suppressing the explicit mention of the configuration la-
bel c, we then mean that all C configurations are elements
of such a set. Further, we shall denote by Eρ(T ,J2) the
set of all Eρ(J2) with J2 ∈ J2. Finally, we define

Emin
ρ (T , J2) =

{
min
c∈C

[ερ(T, J2)] | T ∈ T
}
, (4)

Emin
ρ (T ,J2) =

{
min
c∈C

[ερ(T, J2)] | T ∈ T , J2 ∈ J2

}
.(5)

Average ⟨·⟩ or maximal max[·] values can be defined in
the same way as above for the minimum.

C. Comparing individual spin configurations

When training the VAE, the information about the
spin configurations in the region ρ is learned, i.e., non-
linearly encoded, in the set of parameters of the en-
/decoding neural networks and latent space of the VAE.
Then, when given an arbitrary input spin configuration
at (T, J2), the VAE will generate a new spin configuration
according to the information imprinted on its parameters
based on ρ, aiming to minimize ερ(T, J2). Alternatively,
one can also just use each spin configuration of ρ and then
simply compute ερ(T, J) between a test configuration at
(T, J2) and each reference spin configuration. This leads
to the set Eρ(T, J2) of “reconstruction errors” [102]. As
in the case of the VAE, we can proceed to again define
the reconstruction error sets analogously to (3), (4), and
(5).
Without further optimization, such a direct compari-

son of individual spin configurations will scale with the
number |ρ| of configurations in ρ and each computation
of the reconstruction error in (2) uses O(L2) operations.

IV. RECONSTRUCTION OF THE PHASE
DIAGRAM USING A SINGLE VAE

We can now begin to use the VAE architecture to iden-
tify the phases of the J1-J2 model as a function of T and
J2 for constant J1 = 1. For J2 = 0, we are back to the
nearest-neighbor Ising model with known critical temper-
ature Tc,Ising ≈ 2.269 [41]. We can therefore confidently
choose at least an initial temperature range of 0 ≤ T ≤ 4
containing Tc,Ising. From Sec. II, we also know that the
ferromagnetic-to-superantiferromagnetic transition is at
J2 = 1/2. Hence we choose a range for J2 from 0 to 1.5
(should we later see that these ranges do not suffice to
capture all phases, we could further increase the maximal
T and J2 values). In the present case, we have chosen
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training cycle loss value
global ℓKL 13.1(3)
global ℓε 10072(15)

in-phase (F) ℓKL 9(2)
in-phase (F) ℓε 8(4)
in-phase (S) ℓKL 17(7)
in-phase (S) ℓε 20(20)

global λ 0.2075(3)
in-phase (F) λ 0.0012(2)
in-phase (S) λ 0.001(1)

TABLE I. Losses obtained at epoch 500 for global and in-
phase training cycles as discussed in Secs. IVA and IVB, re-
spectively. The ℓε and ℓKL are given separately to show their
relative importance. The error is calculated as the standard
error, given by σ/

√
n, where σ is the standard deviation of

the mean, and n = 10 is the total number of trainings. The
symbols (F) and (S) indicate the ferromagnetic and super-
antiferromagnetic in-phase training cycles, respectively. The
last three (bold) λ values have been used in Fig. 6.

0 100 200 300 400 500
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.2075

0.001

Global cycle
In-phase cycle: ferromagnetic
In-phase cycle: superantiferromagnetic

FIG. 6. Mean loss per site λ for 500 epochs when averaged
over 10 independent trainings. The black markers represent
the results for the global training cycle while blue and red
represent in-phase training cycles for ferromagnetic training
data and superantiferromagnetic training data, respectively.
The gray horizontal lines indicate the final mean values of λ
at epoch 500. Error bars are the usual standard error of the
mean and shown, for clarity, at every 10th symbol only. The
λ for the global training cycle is visibly higher than for the
in-phase training, due to the selection of ρG,train with training
samples chosen as specified in Sec. IVA.

these T and J2 values to coincide with the range of avail-
able data as described in Sec. II where we denoted these
ranges as T and J2.

A. Global training cycle

In order to train the single VAE, we now choose from
each of the |T | × |J2| = 3454 pairs (T, J2) one of the C
configurations randomly. In this way, configurations from
the whole range of T and J2 values are included in the
training cycle. We shall call this dataset ρG,train ⊂ ρG.
We train for 500 epochs with a batch size of |B| = 64,

and achieve a Kullback-Leibler loss of ℓKL = 13.1 ± 0.3
and an MSE loss of ℓε = 10072 ± 15, see also the first
two lines of Table I. It may be useful to convert this to a
per-site MSE λ. To this end, we first consider the batch
size and the number of spins per configuration 30× 30 =
900 which results in 3454/64 ≈ 54 configurations per
epoch. The total number of spins in training is thus
54 × 900 = 48600. The per-site MSE total loss divided
by the total number of spins during the training, is λ =

(ℓε + ℓKL)/
(
L2 |T |×|J2|

|B|

)
. We find that ℓε corresponds to

λ = 0.2075± 0.0003 for L = 30. As λ is a more intuitive
metric, we use λ to show the evolution of the loss during
training epochs in Fig. 6. One observes good convergence
of the training for a total of 500 epochs.

The workflow after the training is shown in Fig. 4. We
now test how the trained VAE can reconstruct config-
urations using the test dataset ρG,test. Here, ρG,test =
ρG \ ρG,train, i.e., the full dataset with ρG,train removed.
The size of the test dataset is |ρG,test| = |ρG|−|ρG,train| =
138160 − 3454 = 134706. For each pair (T, J2) we then
have C − 1 = 39 generated spin configurations and can
compute ε(T, J2) for each. In order to use the VAE to
reconstruct the phase diagram, we now choose a partic-
ular J ′

2 ∈ J2. We then compute ε(T, J ′
2) for all T ∈ T .

At each (T, J ′
2) there will be a distribution of 39 ε values.

When T and J2 are far away from phase boundaries, the
39 ε(T, J ′

2) values will follow a roughly similar behavior
in each phase. On the other hand, close to phase bound-
aries, there will be a large variation in ε(T, J ′

2). One
could hence in principle compute ⟨ε(T, J ′

2)⟩ to detect a
phase change. We have found that minc∈C ε(T, J ′

2) works
even better for the J1-J2 model.

Figure 7 shows results for J2 = 0 and 0.4. As expected,
for both J2, we see that ε ≈ 0 when T ≪ Tc(J2) while
for T ≫ Tc(J2) we find ε ≈ 0.25. The temperature range
where ε changes is already reasonably close to Tc(J2)
for L = 30 and we note that, upon increasing L, the
curves become sharper with the kink approaching the
exact value in the thermodynamic limit.

Figure 8(a) shows the emerging phase diagram. We
can see that Emin

ρG
(T ,J2) separates into two distinct re-

gions. Let us emphasize that up to this point, we have
not used any a priori information besides the two limit-
ing transition temperatures as outlined above. In partic-
ular, we have not yet used information about the spatial
configurations of the spins in each of the phases. It is
hence noteworthy to find that the border between the
two identified regions already is very close to the known
phase boundaries. The apparent steps in the VAE es-
timates for the phase boundaries arise in fact from the
underlying discrete set of values of T and in particular
J2 investigated whereas the agreement for actual values,
as denoted by the circles, is in fact at the resolution limit
of the figure.
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FIG. 7. Reconstruction error Emin
ρG (T,J2) obtained by a single

VAE for J2 = 0 and 0.4 shown for L = 30 (×, green), 60
(
⊗

, light green) and 120 (⊠, dark green). The 157 gray
vertical lines represent the temperatures in T . The black
solid vertical line indicates the exact Tc(J2 = 0) = 2.269
and the black dashed line shows the numerical estimate of
Tc(J2 = 0.4) = 0.867 from Ref. [66].

B. In-phase training cycle

Having identified two distinct regions in Sec. IVA, we
can now repeat the training of the VAE deep in one of
the two phases. In Figs. 8(b,c) we indicate two distinct
such regions for low T , following the general shape of the
boundary between the two regions which seems to have
a clear separation into low- and high-J2 sub-regions. We
follow the same procedure as for Fig. 8(a), but with the
much more restricted training data regions ρlow-J2 and
ρhigh-J2 . In order to have a reasonable amount of train-
ing data, we now use all 40 values for each (T, J2) in each
training region. For the results underlying Fig. 8(b), this
amounts to 1440 training configurations in ρlow-J2

, while
for Fig. 8(c), we have 1800 configurations in ρhigh-J2

.
Loss function convergence values are presented in Table I.
We note that these low-temperature configurations turn
out to be well ordered, as illustrated by the examples in
Figs. 3(a,e). One could thus also use synthetic configu-
rations in this case. We nevertheless prefer to use Monte
Carlo data deep inside the ordered phases, as illustrated
in Figs. 8(b,c), in order to minimize prior knowledge go-
ing into the reconstruction of the phase diagram.

From Fig. 8(b) we see that the trained network iden-
tifies again two distinct regions. Now, the low-T , low-J2
region is clearly separated from the rest of the (T, J2)

plane. Similarly, Fig. 8(c) establishes a low-T , high-J2
region. We note that in both cases, the ε values in the
low/high-J2 regions are close to zero, while in the other
regions we have ε ≈ 0.5. This value suggests that in both
cases, the out-of-region configurations have about 50% of
spins different, in agreement with the known phases as
presented in Fig. 2. We can therefore conclude that the
low-T region identified in Fig. 8(a) consists of two dis-
tinct regions.

C. Discussion of reconstruction error

Overall, the combination of global and in-phase learn-
ing has indeed led to the identification of three separate
regions. These regions agree very well with the previ-
ously established phases shown in Fig. 2. The ε values
of 0, 0.25, and 0.5 indicate best, random, and worst re-
construction possible, respectively, compatible with the
spin configurations in each phase. Clearly, the regions
with ε ≈ 0 correspond to the ordered ferro- and super-
antiferromagnetic phases. When using the VAEs trained
in both of these phases, we find ε ≈ 0.5 when testing in
the disordered paramagnetic phase, clearly showing the
difference between ordered and disordered phases.
The value of ε ≈ 0.25, however, should not emerge

when simply comparing the configuration of up (+1) and
down (−1) spin states as shown in Figs. 3(a–e). How-
ever, it is compatible with the VAE reconstruction of
spin configurations similar to the undifferentiated “gray”
in Figs. 3(g+h). This tells us that even though we can
train the VAEs in the disordered phase, this does not lead
to any predictive power in the disordered phase. Put dif-
ferently: if we had chosen a third region to train our
VAEs, namely a high-T region in the disordered phase,
we would not have been able to identify the phase bound-
aries to the two ordered phases.

V. RECONSTRUCTION OF THE PHASE
DIAGRAM USING MULTIPLE VAES

Another approach is training multiple VAEs for dif-
ferent regions ρ spanning across the (T, J2) plane. Let
ρT ′(J2) denote a region at constant J2 with varying tem-
perature in T ′ = {0.1, . . . , 4}. T ′ consists of 40 evenly
spaced temperatures with ∆T = 0.1 and T ′ ⊂ T . In
Fig. 8(d), we indicate as example ρT ′(J2 = 1.2). Addi-
tionally, we define by ρJ2

(T ) regions of constant T but
containing the 22 elements of J2. An example of such a
region is again given in Fig. 8(d), namely for T = 0.25.

Then for a given (T, J2) pair, we compute ερ(T, J2). In
order to remove the bias of low ε for in-region trainings,
we average over the reconstruction errors computed from
all ρ, i.e.,

⟨ε⟩(T, J2) =
∑

ρ∈ρT ′ (J2),ρJ2
(T ) ερ(T, J2)

|ρT ′(J2)|+ |ρJ2(T )|
. (6)
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FIG. 8. Emin
ρ (T ,J2) for the VAE-based reconstruction of the J1-J2 model’s phase diagram from Secs. IV and V. The results

correspond to L = 30. For the single VAE approach of Sec. IV, panel (a) shows the global training cycle of Sec. IVA with
ρ = ρG, (b) represents the in-phase learning of Sec. IVB from the low-J2 region ρlow-J2 and (c) gives results for the in-phase
learning from the high-J2 region ρhigh-J2 . The (T, J2) data points of various training regions are indicated by small white dots
for each (T, J2) pair (usually these are closely spaced and hence appear as vertical lines). Lastly, panel (d) shows the results of
the multiple VAE approach of Sec. V. Here, the white dots give examples for the constant J2 (the vertical line of dots) and the
constant T trainings (horizontal line of dots) explained in Sec. VA. In all panels, ◦ symbols connected by black lines denote
the reference phase boundaries of Ref. [66].

As we shall show below, this also allows the identifica-
tion of three separate regions. Although the method cor-
responds to training |J2| + |T ′| = 62 VAEs as outlined
below, this is in practice not much more involved than
the single-VAE method of Sec. IV and can, arguably, be

seen as less biased since we do not select a-priori specific
regions to train for (cf. Sec. IVB). Before proceeding, let
us streamline the notation again and denote the training
set of the 62 VAEs by ρ∆G.
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FIG. 9. Loss per spin λ obtained at epoch 500 for multi-VAE
training cycles as discussed in Sec. V. Blue (+) represents the
loss per spin λ at fixed-J2 training cycle, and green (×) are
the losses λ for a fixed-T training cycle.

A. Constant J2 and T training cycles

In the first instance, we train 22 VAEs, corresponding
to each of the 22 J2 ∈ J2. The training is done for each
VAE on the 40 temperatures in T ′ outlined above, using
the C = 40 available configurations at each (T, J2). In
Fig. 8(d), we indicate this by the vertical line of white
dots at J2 = 1.2; the other 21 lines for the remaining J2
values are not shown for clarity. Next, we train additional
VAEs by selecting a fixed T among the possible values
0, 0.1, . . . , 4 and train a VAE with varying J2 values. In
Fig. 8(d), this is indicated by the horizontal line of white
dots at T = 0.25. Since we have 40 available T ’s to use,
this results in 40 further trained VAEs.

Figure 9 shows the corresponding losses λ at the end
of a training cycle. The precise value of λ depends on
details of the training cycle such as the number of con-
figurations used. Nevertheless, at a qualitative level, we
can interpret these results as follows. Deep inside an
ordered phase, the VAE learns configurations well such
that the loss λ is close to 0. On the other hand, the VAE
is unable to learn a disordered configuration and rather
returns an average gray for these, compare Fig. 3(g+h).
This amounts to a loss λ ≈ 0.25. When the training
dataset contains a mixture of ordered and disordered
configurations, the overall loss seems to be a weighted
average of these two limits. The results in Fig. 9 thus re-
flect the fraction of the disordered configurations in the
corresponding cut at fixed J2 or T , respectively.

B. Result for averaged VAEs

Armed with the 62 trained VAEs, we can now go to
each of the |T ′| × |J2| = 157 × 22 points in the (T, J2)
plane, compute ερT ′ (T, J2) for each of the 40 configura-
tions and then average to create EρT ′ (T ,J2). The result
is shown in Fig. 8(d). As in the other panels of Fig. 8, we
find a distinction between different phases. The changes
from one phase to the next, when plotted for constant
J2, are very similar to Fig. 7. We find that there are
three distinct regions, namely one with ε ≈ 0, a second
one with ≈ 0.25 and the third showing ε ≈ 0.17. These
regions match the superantiferromagnetic, the ferromag-
netic, and the paramagnetic phases in Fig. 2 very well.

VI. CONSTRUCTING THE PHASE DIAGRAM
BY COMPARING CONFIGURATIONS

Now we will investigate if one can shortcut the techni-
cal complications of the VAE and perform a direct com-
parison of configurations (CMP) instead. We proceed
analogously to Sec. IVA and again select one of the C
configurations randomly from each of the |T | × |J2| =
3454 pairs (T, J2) shown in Fig. 8. We shall denote this
reference set as ϱG. Instead of training as in the VAE,
the CMP approach simply computes an averaged recon-
struction error ⟨εϱG

⟩(T, J2) for a given test pair (T, J2),
where the mean is found by averaging over all ε for each
data point in ϱG. In order to simplify again the notation,
and since the average is somewhat implicit in the use of
the subscript ϱG, we shall proceed by using εϱG

(T, J2) to
denote this averaged reconstruction error.

A. Global comparison cycle

As in Sec. IVA, we have 39 data points available
to compute εϱG

(T, J2) for each pair (T, J2). We again
choose a J ′

2 ∈ J2 and compute εϱG
(T, J ′

2) for all T ∈ T .
This yields 39 values for each (T, J2). Studying again
εmin
ϱG

(T, J ′
2), Figure 10 shows results for J ′

2 = 0 and 0.4.
The result is qualitatively remarkably close to that of
Fig. 7, showing a change from low εmin

ϱG
∼ 0 to values close

to 0.5 at high temperatures. The values of εmin
ϱG

are very
similar and as before, going from L = 30 to 60, and finally
to 120 makes the change of εϱG

more pronounced when
passing from the low-T region to the high-T one. Figure
11(a) presents an overview of the results of this approach
for the full J2-T regime for the L = 30 system. Overall,
we can distinguish two regions: a low-temperature one
with low reconstruction error ε and a high-temperature
one where ε approaches 0.5.
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FIG. 10. Reconstruction error Emin
ρG (T,J2) obtained by direct

comparison of configurations for J2 = 0 and 0.4 shown for
L = 30 (+, blue), L = 60 (

⊕
, light blue), and L = 120 (⊞,

dark blue). As in Fig. 7, the vertical gray and black (solid and
dashed) lines show the temperature resolution and positions
of Tc for J2 = 0 and 0.4, respectively.

B. In-phase comparison cycle

Following the reasoning of Sec. IVB, we again define
two low-T regions as indicated in Figs. 11(b+c). We
equip the CMP with the restricted data region, e.g.,
ϱlow-J2

and ϱhigh-J2
, and as before use the full 40 spin con-

figurations for each (T, J2) in ϱlow-J2
and ϱhigh-J2

. Figure
11(b) shows that two regions can be identified; a low-T ,
low-J2 region has separated from the rest of the (T, J2)
plane. For Fig. 11(c), a similar observation allows to dif-
ferentiate a low-T , high-J2 region in the (T, J2) plane.
The ε values in the low/high-J2 regions in Figs. 11(b+c)
are close to zero, while in the other regions we have
ε ≈ 0.5. The results for the CMP approach are hence
also in good agreement with the known phases as pre-
sented in Fig. 2 and we can therefore again conclude that
the low-T region identified in Fig. 11(a) consists of two
distinct regions.

We can combine Figs. 11(b+c) into one by consider-
ing their element-wise difference. Figure 11(d) shows the
resulting phase diagram where, as in Fig. 8(d), all three
phases can be distinguished clearly.

C. Discussion of reconstruction error

The VAE returned a reconstruction error ε ≈ 0.25 in
the disordered high-temperature phase (compare Figs. 7

and 8(a+d)). The CMP procedure yields instead a twice
larger value ε ≈ 0.5 (see Figs. 10 and 11). The explana-
tion is very simple: while the VAE reproduces the gray
images shown in Figs. 3(g+h) for the disordered phase,
the direct calculation of ε only uses the discrete ±1 spin
values. Thus, while the ε = 0.25 of the VAE corresponds
to the squared distance of either black or white pixels to
an average gray, the value ε = 0.5 found in the CMP pro-
cedure corresponds to the average of half of the pixels in
two random images being identical and the other half is
the opposite of each other. We also note that in Fig. 11,
one has to be quite far from the phase boundaries to find
ε ≈ 0.5 to a good accuracy while mostly ε ≲ 0.5. This
behavior suggests that the configuration comparison is
sensitive to the difference of each spin in any two config-
urations being compared. Close to the phase boundary,
the system undergoes a rapid change between two phases,
causing a rapid change in the values of spin representa-
tion, resulting in ε ≲ 0.5.

VII. IDENTIFYING THE PHASE BOUNDARIES

Figures 7 and 10 indicate that different phases are dis-
tinguished well by different values of their reconstruction
errors ε. Furthermore, we note that the sharpness of the
difference in ε becomes more pronounced when increas-
ing L. This suggests that it is possible to obtain good
estimates for the phase boundaries when computing the
points T , J2 at which these changes in ε occur. In the
following, we shall restrict ourselves to computing the
temperature values T∗ at which the phases change, using
the data as shown in Figs. 7 and 10, but for all J2. We
will estimate T∗ by computing the value of temperature
at the maximum of the derivative,

T∗(J2) = argmax
T

[
∂E(J2)
∂T

]
. (7)

In order to reduce numerical fluctuations in the data, we
use a simple cubic spline fit [103]. For error estimation,
the E(J2) data is split into two frames with alternating
T values. We then calculate T∗1 and T∗2 in both frames
and use half the absolute difference |T∗1−T∗2|/2 as error
estimate for T∗.
Figure 12 shows the results of this analysis for the

30× 30, 60× 60, and 120× 120 lattices. Panel (a) shows
that the T∗ values estimated by the derivative (7) for
the VAE-based ε are indeed close to the known values
for Tc and the agreement gets better when increasing L
from 30 to 120, i.e., the deviations seem to be mainly
due to the VAE being applied to small lattices. Further-
more, the error estimates highlight that deviations from
the reference data primarily arise from finite-size effects,
although not exclusively. The L = 30 data in panel (a)
shows that the extent of these deviations varies with J2.
The T∗ estimates appear closer to the reference Tc values
in instances that are less noisy. Figure 12(b) shows the
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FIG. 11. Reconstruction error Emin
ρG (T ,J2) for the CMP-based reconstruction of the phase diagram for the J1-J2 Ising model

with L = 30. (a) Contour plot of all the ECMP(J2) computed with the global comparison cycle, described in Sec. VIA, made
by randomly selecting reference configurations from the entire dataset. (b) Contour plot of all the ECMP(J2) computed with
the in-phase comparison cycle, described in Sec. VIB, made by choosing reference configurations from (T, J2) tuples such
that J2 ∈ {0.0, 0.1, 0.2, 0.3} and T ∈ {0.1 . . . 0.3}, also represented as white points. (c) Contour plot of all the ECMP(T, J2)
computed with the in-phase comparison cycle, made by choosing reference configurations from (T, J2) tuples such that J2 ∈
{0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5} and T ∈ {0.1 . . . 0.3} (VIB). (d) Element-wise difference of (b) and (c), i.e., (b)−(c). As in
Fig. 8, the ◦ symbols connected by black lines denote the reference phase boundaries of Ref. [66] in each panel.

influence of the VAE training region on the T∗ predic-
tions for the fixed size L = 30. One observes that, at
fixed L, the high-J2 in-phase training cycle reproduces
the reference Tc values best.

For the CMP approach, the differences between T∗

and Tc are similar to the VAE: upon increasing L, the
T∗ values become closer to their Tc targets (Fig. 12(c)),
while the in-phase-based CMP method results in the best
agreement of T∗ with Tc (Fig. 12(d)). In Fig. 12(c) one
again observes not only better accuracy for the larger val-
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FIG. 12. Comparison of predictions for phase boundaries as determined by the VAE (a+b) and CMP (c+d) approaches. (a)
Results from VAE global training cycle (Sec. IVA) for different system sizes L = 30 (×, green), 60 (

⊗
, light green), and 120

(⊠, dark green). (b) Results for L = 30 from VAE global training cycle (Sec. IVA, ×, green), in-phase training cycle (Sec. IVB,
⊙, light green), and using multiple VAEs (Sec. V, ∗, dark green). (c) Different L for in-phase CMP (Sec. VIB) with L = 30
(⊕, blue), 60 (

⊕
, light blue), and L = 120 (⊞, dark blue). (d) Comparison of global CMP (blue (+)) and in-phase CMP

cycles (light blue (⊙)) with L = 30. In all panels, ◦ symbols connected by black lines denote the reference phase boundaries of
Ref. [66].

ues of L, but also smaller statistical errors, like for the
VAE in Fig. 12(a).

VIII. CONCLUSIONS

We have explored two unbiased machine-“learning” ap-
proaches to the detection of phase diagrams using the ex-
ample of the J1-J2 Ising model on the square lattice. We
found that both the variational autoencoder (VAE) and
a direct comparison of configurations (CMP) can suc-
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cessfully detect all three phases exhibited by this model,
where the main factor limiting accuracy of the location
of the phase boundaries appears to be the size of the
lattices employed in these investigations, both via finite-
size effects and a stronger influence of statistical noise for
smaller systems.

Specifically, for the VAEs presented here, we found in
Sec. IV that, aiming for an unbiased reconstruction of
the phases, a sequence of combinations of VAEs works
best. Construction of this sequence still requires human
input, so it is not yet a fully automatic “machine-led”
process.

The use of VAEs to determine phases from just the
spin configurations suggests that these themselves should
contain sufficient information to identify phases. Our
second approach using just a simple comparison of con-
figurations establishes that this indeed is possible. In
this approach, we replace the training phase of the VAE
with a memory of spin configurations. We find that, for
the relatively small system sizes considered here, both
approaches give comparable accuracy.

Both VAE and CMP approaches yield, at least so far,
limited accuracy when trying to determine the exact po-
sition of the transition points between phases. It seems
that here the VAE approach is somewhat better thanks
to its built-in capability to interpolate, but there is still
considerable room for improvement in both strategies.
One might for example in the CMP approach replace the
simple MSE with more sophisticated choices such as a
zero normalized cross-correlation [104] – which of course
could also be used as a quantity to measure loss for the
VAEs.

On reflection, both methods should be best used to de-
termine the bulk of the phases and not so much to charac-
terize the transition regions. As such, a more exploratory
strategy suggests itself: knowing the critical temperature
of the Ising model, Tc(J2 = 0), and the T = 0 transition
at J2 = 1/2 in the J1-J2 model, one might want to find
a starting point (T, J2) in the T < Tc regime with (a)
J2 ≪ 1/2 and (b) J2 ≫ 1/2. Then, e.g., for (a), one
should explore locally around that starting point, with
either VAE or CMP, and find other (T ′, J ′

2) such that
ε(T, J2) ∼ ε(T ′, J ′

2). This would explore the phase close
to the starting (T, J2). Then repeat the same for region
(b). Clearly, when ε(T, J2) ≁ ε(T ′, J ′

2), one comes close
to the phase boundaries. Such a strategy, when using
the CMP, would only need to store the starting config-
uration at (T, J2) with very little memory consumption.
One could even include the newly found configurations
belonging to the same phase when comparing with fur-
ther configurations. With regard to a first possible ap-
plication of such a strategy we note that the honeycomb
lattice is topologically equivalent to a square lattice with
some bonds being switched off [22, 86]. Consequently, it
would be interesting to see if such a strategy is able to
connect the present study to investigations of the hon-
eycomb lattice [22, 86] by suitably varying some of the
coupling constants.

If the aim instead would be to indeed use ML to deter-
mine the phase boundaries, then a more detailed finite-
size scaling analysis is called for. This is beyond the aims
of the present study. Still, already Refs. [10, 38, 105]
presented some scaling results. However, Ref. [106] high-
lights that such scaling studies can suffer from large un-
certainties and systematic deviations for values of critical
exponents.
Also, the VAE is capable of providing additional in-

formation beyond the capabilities of the CMP. First, the
generative nature of the VAE allows to construct at least
approximate spin states without using the MC method.
In the exploratory strategy outlined above, this means
that one might be able to reduce computationally chal-
lenging MC calculations to a small training set deep
in each phase and then explore the phases with VAE-
generated states instead of MC-equilibrated ones. Partic-
ularly for low-T states, where equilibration is computa-
tionally intensive, this might provide a speed advantage.
Second, the size of the latent space, i.e., its dimension,
can provide additional information which can be useful
to study other aspects of statistical models.
In conclusion, our investigations indicate that in pre-

vious work based on the reconstruction error [22, 86] a
neuronal network is not fundamentally required, but that
the essential idea behind uncovering the structure of the
phase diagram, without manually defining an order pa-
rameter for each phase, is to actually look at the configu-
rations, and this process can be automated even without
resorting to a neuronal network [107]. Implementation of
a direct comparison of configurations is straightforward,
could still be optimized beyond the present implementa-
tion, and avoids possible complications inherent to VAEs
such as the need to ensure proper training of the neuronal
network.
Let us mention similar caveats that some of the present

authors have recently found in the context of percola-
tion. Not only does a neural-network approach fail to
correctly reproduce the sample-to-sample fluctuations of
the correlation length ξ in a supervised-learning con-
text [54, 55], but instead of learning the physics of a
global spanning cluster in classification of percolating ver-
sus non-percolating configurations, the network seems to
rather learn how to guess this property via the proxy of
the density of occupied sites in the system.
These findings call for further investigations to under-

stand the real value of neuronal networks, in particular
those designed for image-recognition tasks, when these
are applied to the study of phase transitions.
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Appendix A: The sign of J1

Here we show that changing the sign of J1 in the Hamil-
tonian (1) yields equivalent physics. It is convenient to
split the site index i into two integer coordinates x, y = 1,
. . ., L. Then consider the following transformation of spin
variables

s′x,y = (−1)x+y sx,y . (A1)

When rewritten in terms of these new variables, the
Hamiltonian (1) becomes

HJ1J2
= +J1

L∑
x,y=1

s′x,y
(
s′x+1,y + s′x,y+1

)
+J2

L∑
x,y=1

s′x,y
(
s′x+1,y+1 + s′x+1,y−1

)
. (A2)

Clearly, the sign of J1 has changed while the one of J2 has
remained unchanged. This implies that energy-related
observables are independent of the sign of J1, including
the phase diagram. However, the precise nature of the
configuration is changed; for example, the ferromagnetic
state in the conventions of the main text is mapped to
the antiferromagnetic one in the primed variables.
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[101] B. Çivitcioğlu, Phase determination with and without
deep learning for the J1-J2 Ising model, Ph.D. thesis,
CY Cergy Paris Université (2024).
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